إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتقة.
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2
احسِب قيمة .
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.4
احسِب قيمة .
خطوة 1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4.3
اضرب في .
خطوة 1.5
أضف و.
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
اضرب في .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4
جمّع الحدود.
خطوة 2.4.1
أضف و.
خطوة 2.4.2
أضف و.
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
خطوة 4.1
أوجِد المشتق الأول.
خطوة 4.1.1
أوجِد المشتقة.
خطوة 4.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2
احسِب قيمة .
خطوة 4.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.3
اضرب في .
خطوة 4.1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.4
احسِب قيمة .
خطوة 4.1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.4.3
اضرب في .
خطوة 4.1.5
أضف و.
خطوة 4.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 5
خطوة 5.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 5.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 5.2.1
اطرح من كلا المتعادلين.
خطوة 5.2.2
أضف إلى كلا المتعادلين.
خطوة 5.3
اقسِم كل حد في على وبسّط.
خطوة 5.3.1
اقسِم كل حد في على .
خطوة 5.3.2
بسّط الطرف الأيسر.
خطوة 5.3.2.1
ألغِ العامل المشترك لـ .
خطوة 5.3.2.1.1
ألغِ العامل المشترك.
خطوة 5.3.2.1.2
اقسِم على .
خطوة 5.3.3
بسّط الطرف الأيمن.
خطوة 5.3.3.1
بسّط كل حد.
خطوة 5.3.3.1.1
احذِف العامل المشترك لـ و.
خطوة 5.3.3.1.1.1
أخرِج العامل من .
خطوة 5.3.3.1.1.2
ألغِ العوامل المشتركة.
خطوة 5.3.3.1.1.2.1
أخرِج العامل من .
خطوة 5.3.3.1.1.2.2
ألغِ العامل المشترك.
خطوة 5.3.3.1.1.2.3
أعِد كتابة العبارة.
خطوة 5.3.3.1.1.2.4
اقسِم على .
خطوة 5.3.3.1.2
اقسِم على .
خطوة 6
خطوة 6.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 7
النقاط الحرجة اللازم حساب قيمتها.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
خطوة 10
خطوة 10.1
استبدِل المتغير بـ في العبارة.
خطوة 10.2
بسّط النتيجة.
خطوة 10.2.1
بسّط كل حد.
خطوة 10.2.1.1
أعِد كتابة بالصيغة .
خطوة 10.2.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 10.2.1.2.1
طبّق خاصية التوزيع.
خطوة 10.2.1.2.2
طبّق خاصية التوزيع.
خطوة 10.2.1.2.3
طبّق خاصية التوزيع.
خطوة 10.2.1.3
بسّط ووحّد الحدود المتشابهة.
خطوة 10.2.1.3.1
بسّط كل حد.
خطوة 10.2.1.3.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 10.2.1.3.1.2
اضرب في بجمع الأُسس.
خطوة 10.2.1.3.1.2.1
انقُل .
خطوة 10.2.1.3.1.2.2
اضرب في .
خطوة 10.2.1.3.1.3
اضرب في .
خطوة 10.2.1.3.1.4
اضرب في .
خطوة 10.2.1.3.1.5
اضرب في .
خطوة 10.2.1.3.1.6
اضرب في .
خطوة 10.2.1.3.2
اطرح من .
خطوة 10.2.1.4
طبّق خاصية التوزيع.
خطوة 10.2.1.5
اضرب في .
خطوة 10.2.1.6
اضرب في .
خطوة 10.2.1.7
طبّق خاصية التوزيع.
خطوة 10.2.1.8
اضرب في بجمع الأُسس.
خطوة 10.2.1.8.1
انقُل .
خطوة 10.2.1.8.2
اضرب في .
خطوة 10.2.1.9
طبّق خاصية التوزيع.
خطوة 10.2.1.10
اضرب في .
خطوة 10.2.1.11
اضرب في .
خطوة 10.2.2
بسّط بجمع الحدود.
خطوة 10.2.2.1
جمّع الحدود المتعاكسة في .
خطوة 10.2.2.1.1
أضف و.
خطوة 10.2.2.1.2
أضف و.
خطوة 10.2.2.2
اطرح من .
خطوة 10.2.2.3
أضف و.
خطوة 10.2.2.4
اطرح من .
خطوة 10.2.3
الإجابة النهائية هي .
خطوة 11
هذه هي القيم القصوى المحلية لـ .
هي نقاط دنيا محلية
خطوة 12