حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية f(x)=12x^2-2x^3+3y^2+6xy
خطوة 1
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
اضرب في .
خطوة 1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.5
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.5.3
اضرب في .
خطوة 1.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.6.1
أضف و.
خطوة 1.6.2
أعِد ترتيب الحدود.
خطوة 2
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
اضرب في .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4.2
أضف و.
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.3
اضرب في .
خطوة 4.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.3.3
اضرب في .
خطوة 4.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.5
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.5.3
اضرب في .
خطوة 4.1.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.6.1
أضف و.
خطوة 4.1.6.2
أعِد ترتيب الحدود.
خطوة 4.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 5
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 5.2
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 5.3
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 5.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1.1
ارفع إلى القوة .
خطوة 5.4.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1.2.1
اضرب في .
خطوة 5.4.1.2.2
اضرب في .
خطوة 5.4.1.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1.3.1
أخرِج العامل من .
خطوة 5.4.1.3.2
أخرِج العامل من .
خطوة 5.4.1.4
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1.4.1
أعِد كتابة بالصيغة .
خطوة 5.4.1.4.2
أعِد كتابة بالصيغة .
خطوة 5.4.1.5
أخرِج الحدود من تحت الجذر.
خطوة 5.4.1.6
ارفع إلى القوة .
خطوة 5.4.2
اضرب في .
خطوة 5.4.3
بسّط .
خطوة 5.5
بسّط العبارة لإيجاد قيمة الجزء من .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1.1
ارفع إلى القوة .
خطوة 5.5.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1.2.1
اضرب في .
خطوة 5.5.1.2.2
اضرب في .
خطوة 5.5.1.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1.3.1
أخرِج العامل من .
خطوة 5.5.1.3.2
أخرِج العامل من .
خطوة 5.5.1.4
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1.4.1
أعِد كتابة بالصيغة .
خطوة 5.5.1.4.2
أعِد كتابة بالصيغة .
خطوة 5.5.1.5
أخرِج الحدود من تحت الجذر.
خطوة 5.5.1.6
ارفع إلى القوة .
خطوة 5.5.2
اضرب في .
خطوة 5.5.3
بسّط .
خطوة 5.5.4
غيّر إلى .
خطوة 5.6
بسّط العبارة لإيجاد قيمة الجزء من .
انقر لعرض المزيد من الخطوات...
خطوة 5.6.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.6.1.1
ارفع إلى القوة .
خطوة 5.6.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 5.6.1.2.1
اضرب في .
خطوة 5.6.1.2.2
اضرب في .
خطوة 5.6.1.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 5.6.1.3.1
أخرِج العامل من .
خطوة 5.6.1.3.2
أخرِج العامل من .
خطوة 5.6.1.4
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 5.6.1.4.1
أعِد كتابة بالصيغة .
خطوة 5.6.1.4.2
أعِد كتابة بالصيغة .
خطوة 5.6.1.5
أخرِج الحدود من تحت الجذر.
خطوة 5.6.1.6
ارفع إلى القوة .
خطوة 5.6.2
اضرب في .
خطوة 5.6.3
بسّط .
خطوة 5.6.4
غيّر إلى .
خطوة 5.7
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 6
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 7
النقاط الحرجة اللازم حساب قيمتها.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 9.1.1
طبّق خاصية التوزيع.
خطوة 9.1.2
اضرب في .
خطوة 9.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 9.2.1
أضف و.
خطوة 9.2.2
اطرح من .
خطوة 10
بما أن اختبار المشتق الأول فشل، إذن لا توجد قيم قصوى محلية.
لا توجد قيمة قصوى محلية
خطوة 11