حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية f(x)=x^4-4x^3+10x^9
خطوة 1
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
اضرب في .
خطوة 1.4
أعِد ترتيب الحدود.
خطوة 2
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
اضرب في .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 2.4
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4.3
اضرب في .
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.3
اضرب في .
خطوة 4.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.3.3
اضرب في .
خطوة 4.1.4
أعِد ترتيب الحدود.
خطوة 4.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 5
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 5.2
مثّل كل متعادل بيانيًا. الحل هو قيمة x لنقطة التقاطع.
خطوة 6
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 7
النقاط الحرجة اللازم حساب قيمتها.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 9.1.1
ارفع إلى القوة .
خطوة 9.1.2
اضرب في .
خطوة 9.1.3
ارفع إلى القوة .
خطوة 9.1.4
اضرب في .
خطوة 9.1.5
اضرب في .
خطوة 9.2
بسّط بجمع الأعداد.
انقر لعرض المزيد من الخطوات...
خطوة 9.2.1
أضف و.
خطوة 9.2.2
أضف و.
خطوة 10
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
خطوة 11
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 11.1
استبدِل المتغير بـ في العبارة.
خطوة 11.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1.1
ارفع إلى القوة .
خطوة 11.2.1.2
ارفع إلى القوة .
خطوة 11.2.1.3
اضرب في .
خطوة 11.2.1.4
ارفع إلى القوة .
خطوة 11.2.1.5
اضرب في .
خطوة 11.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.2.1
أضف و.
خطوة 11.2.2.2
اطرح من .
خطوة 11.2.3
الإجابة النهائية هي .
خطوة 12
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 13
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 13.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 13.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 13.1.2
اضرب في .
خطوة 13.1.3
ينتج عن رفع إلى أي قوة موجبة.
خطوة 13.1.4
اضرب في .
خطوة 13.1.5
اضرب في .
خطوة 13.2
بسّط بجمع الأعداد.
انقر لعرض المزيد من الخطوات...
خطوة 13.2.1
أضف و.
خطوة 13.2.2
أضف و.
خطوة 14
نظرًا إلى وجود نقطة واحدة على الأقل بها أو مشتق ثانٍ غير معرّف، طبّق اختبار المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 14.1
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق الأول مساويًا لـ أو غير معرّف.
خطوة 14.2
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 14.2.1
استبدِل المتغير بـ في العبارة.
خطوة 14.2.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 14.2.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 14.2.2.1.1
ارفع إلى القوة .
خطوة 14.2.2.1.2
اضرب في .
خطوة 14.2.2.1.3
ارفع إلى القوة .
خطوة 14.2.2.1.4
اضرب في .
خطوة 14.2.2.1.5
ارفع إلى القوة .
خطوة 14.2.2.1.6
اضرب في .
خطوة 14.2.2.2
بسّط بطرح الأعداد.
انقر لعرض المزيد من الخطوات...
خطوة 14.2.2.2.1
اطرح من .
خطوة 14.2.2.2.2
اطرح من .
خطوة 14.2.2.3
الإجابة النهائية هي .
خطوة 14.3
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 14.3.1
استبدِل المتغير بـ في العبارة.
خطوة 14.3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 14.3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 14.3.2.1.1
ارفع إلى القوة .
خطوة 14.3.2.1.2
اضرب في .
خطوة 14.3.2.1.3
ارفع إلى القوة .
خطوة 14.3.2.1.4
اضرب في .
خطوة 14.3.2.1.5
ارفع إلى القوة .
خطوة 14.3.2.1.6
اضرب في .
خطوة 14.3.2.2
بسّط بطرح الأعداد.
انقر لعرض المزيد من الخطوات...
خطوة 14.3.2.2.1
اطرح من .
خطوة 14.3.2.2.2
اطرح من .
خطوة 14.3.2.3
الإجابة النهائية هي .
خطوة 14.4
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 14.4.1
استبدِل المتغير بـ في العبارة.
خطوة 14.4.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 14.4.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 14.4.2.1.1
ارفع إلى القوة .
خطوة 14.4.2.1.2
اضرب في .
خطوة 14.4.2.1.3
ارفع إلى القوة .
خطوة 14.4.2.1.4
اضرب في .
خطوة 14.4.2.1.5
ارفع إلى القوة .
خطوة 14.4.2.1.6
اضرب في .
خطوة 14.4.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 14.4.2.2.1
أضف و.
خطوة 14.4.2.2.2
اطرح من .
خطوة 14.4.2.3
الإجابة النهائية هي .
خطوة 14.5
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 14.5.1
استبدِل المتغير بـ في العبارة.
خطوة 14.5.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 14.5.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 14.5.2.1.1
ارفع إلى القوة .
خطوة 14.5.2.1.2
اضرب في .
خطوة 14.5.2.1.3
ارفع إلى القوة .
خطوة 14.5.2.1.4
اضرب في .
خطوة 14.5.2.1.5
ارفع إلى القوة .
خطوة 14.5.2.1.6
اضرب في .
خطوة 14.5.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 14.5.2.2.1
أضف و.
خطوة 14.5.2.2.2
اطرح من .
خطوة 14.5.2.3
الإجابة النهائية هي .
خطوة 14.6
بما أن علامة المشتق الأول تغيّرت من موجب إلى سالب حول ، إذن تمثل حدًا أقصى محليًا.
هي حد أقصى محلي
خطوة 14.7
بما أن علامة المشتق الأول لم تتغيّر حول ، إذن هذه النقطة لا تمثل حدًا أقصى محليًا أو حدًا أدنى محليًا.
لا تمثل حدًا أقصى محليًا أو حدًا أدنى محليًا
خطوة 14.8
بما أن علامة المشتق الأول تغيّرت من سالب إلى موجب حول ، إذن تمثل حدًا أدنى محليًا.
هي حد أدنى محلي
خطوة 14.9
هذه هي القيم القصوى المحلية لـ .
هي حد أقصى محلي
هي حد أدنى محلي
هي حد أقصى محلي
هي حد أدنى محلي
خطوة 15