إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3
اضرب في .
خطوة 1.4
مشتق بالنسبة إلى يساوي .
خطوة 1.5
اضرب في .
خطوة 2
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3
مشتق بالنسبة إلى يساوي .
خطوة 2.4
اضرب في بجمع الأُسس.
خطوة 2.4.1
اضرب في .
خطوة 2.4.1.1
ارفع إلى القوة .
خطوة 2.4.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.4.2
أضف و.
خطوة 2.5
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.5.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.5.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.5.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.6
انقُل إلى يسار .
خطوة 2.7
مشتق بالنسبة إلى يساوي .
خطوة 2.8
اضرب في .
خطوة 2.9
ارفع إلى القوة .
خطوة 2.10
ارفع إلى القوة .
خطوة 2.11
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.12
أضف و.
خطوة 2.13
بسّط.
خطوة 2.13.1
طبّق خاصية التوزيع.
خطوة 2.13.2
اضرب في .
خطوة 2.13.3
أعِد ترتيب الحدود.
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 5
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
أوجِد قيمة في .
خطوة 5.2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 5.2.2
بسّط .
خطوة 5.2.2.1
أعِد كتابة بالصيغة .
خطوة 5.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أنها أعداد حقيقية.
خطوة 5.2.3
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 5.2.4
بسّط الطرف الأيمن.
خطوة 5.2.4.1
القيمة الدقيقة لـ هي .
خطوة 5.2.5
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 5.2.6
بسّط .
خطوة 5.2.6.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.2.6.2
اجمع الكسور.
خطوة 5.2.6.2.1
اجمع و.
خطوة 5.2.6.2.2
اجمع البسوط على القاسم المشترك.
خطوة 5.2.6.3
بسّط بَسْط الكسر.
خطوة 5.2.6.3.1
اضرب في .
خطوة 5.2.6.3.2
اطرح من .
خطوة 5.2.7
حل المعادلة .
خطوة 6
خطوة 6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2
أوجِد قيمة في .
خطوة 6.2.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 6.2.2
بسّط الطرف الأيمن.
خطوة 6.2.2.1
القيمة الدقيقة لـ هي .
خطوة 6.2.3
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 6.2.4
اطرح من .
خطوة 6.2.5
حل المعادلة .
خطوة 7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
خطوة 9.1
بسّط كل حد.
خطوة 9.1.1
القيمة الدقيقة لـ هي .
خطوة 9.1.2
ينتج عن رفع إلى أي قوة موجبة.
خطوة 9.1.3
اضرب في .
خطوة 9.1.4
القيمة الدقيقة لـ هي .
خطوة 9.1.5
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 9.1.6
اضرب في .
خطوة 9.1.7
القيمة الدقيقة لـ هي .
خطوة 9.1.8
ينتج عن رفع إلى أي قوة موجبة.
خطوة 9.1.9
اضرب في .
خطوة 9.2
أضف و.
خطوة 10
خطوة 10.1
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق الأول مساويًا لـ أو غير معرّف.
خطوة 10.2
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 10.2.1
استبدِل المتغير بـ في العبارة.
خطوة 10.2.2
بسّط النتيجة.
خطوة 10.2.2.1
احسِب قيمة .
خطوة 10.2.2.2
ارفع إلى القوة .
خطوة 10.2.2.3
اضرب في .
خطوة 10.2.2.4
احسِب قيمة .
خطوة 10.2.2.5
اضرب في .
خطوة 10.2.2.6
الإجابة النهائية هي .
خطوة 10.3
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 10.3.1
استبدِل المتغير بـ في العبارة.
خطوة 10.3.2
بسّط النتيجة.
خطوة 10.3.2.1
احسِب قيمة .
خطوة 10.3.2.2
ارفع إلى القوة .
خطوة 10.3.2.3
اضرب في .
خطوة 10.3.2.4
احسِب قيمة .
خطوة 10.3.2.5
اضرب في .
خطوة 10.3.2.6
الإجابة النهائية هي .
خطوة 10.4
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 10.4.1
استبدِل المتغير بـ في العبارة.
خطوة 10.4.2
بسّط النتيجة.
خطوة 10.4.2.1
احسِب قيمة .
خطوة 10.4.2.2
ارفع إلى القوة .
خطوة 10.4.2.3
اضرب في .
خطوة 10.4.2.4
احسِب قيمة .
خطوة 10.4.2.5
اضرب في .
خطوة 10.4.2.6
الإجابة النهائية هي .
خطوة 10.5
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 10.5.1
استبدِل المتغير بـ في العبارة.
خطوة 10.5.2
بسّط النتيجة.
خطوة 10.5.2.1
احسِب قيمة .
خطوة 10.5.2.2
ارفع إلى القوة .
خطوة 10.5.2.3
اضرب في .
خطوة 10.5.2.4
احسِب قيمة .
خطوة 10.5.2.5
اضرب في .
خطوة 10.5.2.6
الإجابة النهائية هي .
خطوة 10.6
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 10.6.1
استبدِل المتغير بـ في العبارة.
خطوة 10.6.2
بسّط النتيجة.
خطوة 10.6.2.1
احسِب قيمة .
خطوة 10.6.2.2
ارفع إلى القوة .
خطوة 10.6.2.3
اضرب في .
خطوة 10.6.2.4
احسِب قيمة .
خطوة 10.6.2.5
اضرب في .
خطوة 10.6.2.6
الإجابة النهائية هي .
خطوة 10.7
بما أن علامة المشتق الأول لم تتغيّر حول ، إذن هذه النقطة لا تمثل حدًا أقصى محليًا أو حدًا أدنى محليًا.
لا تمثل حدًا أقصى محليًا أو حدًا أدنى محليًا
خطوة 10.8
بما أن علامة المشتق الأول تغيّرت من سالب إلى موجب حول ، إذن تمثل حدًا أدنى محليًا.
هي حد أدنى محلي
خطوة 10.9
بما أن علامة المشتق الأول تغيّرت من موجب إلى سالب حول ، إذن تمثل حدًا أقصى محليًا.
هي حد أقصى محلي
خطوة 10.10
بما أن علامة المشتق الأول لم تتغيّر حول ، إذن هذه النقطة لا تمثل حدًا أقصى محليًا أو حدًا أدنى محليًا.
لا تمثل حدًا أقصى محليًا أو حدًا أدنى محليًا
خطوة 10.11
هذه هي القيم القصوى المحلية لـ .
هي حد أدنى محلي
هي حد أقصى محلي
هي حد أدنى محلي
هي حد أقصى محلي
خطوة 11