حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية f(x)=8.4x^0.75-2.1x+38.75
خطوة 1
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
اضرب في .
خطوة 1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.5.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.2.1
اجمع و.
خطوة 1.5.2.2
أضف و.
خطوة 2
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أعِد كتابة بالصيغة .
خطوة 2.2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.5
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.5.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.5.2
اضرب في .
خطوة 2.2.6
اضرب في .
خطوة 2.2.7
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.7.1
انقُل .
خطوة 2.2.7.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.7.3
اطرح من .
خطوة 2.2.8
اضرب في .
خطوة 2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 2.4.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.1
اجمع و.
خطوة 2.4.2.2
انقُل السالب أمام الكسر.
خطوة 2.4.2.3
أضف و.
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.3
اضرب في .
خطوة 4.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.3.3
اضرب في .
خطوة 4.1.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.5.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 4.1.5.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.5.2.1
اجمع و.
خطوة 4.1.5.2.2
أضف و.
خطوة 4.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 5
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 5.2
أضف إلى كلا المتعادلين.
خطوة 5.3
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 5.3.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 5.4
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
اضرب كل حد في في .
خطوة 5.4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.4.2.1.1
ألغِ العامل المشترك.
خطوة 5.4.2.1.2
أعِد كتابة العبارة.
خطوة 5.5
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.1
أعِد كتابة المعادلة في صورة .
خطوة 5.5.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.2.1
اقسِم كل حد في على .
خطوة 5.5.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.2.2.1.1
ألغِ العامل المشترك.
خطوة 5.5.2.2.1.2
اقسِم على .
خطوة 5.5.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.2.3.1
اقسِم على .
خطوة 5.5.3
حوّل الأُس العشري إلى أُس كسري.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.3.1
حوّل العدد العشري إلى كسر برفعه إلى قوة عشرة. ونظرًا إلى وجود من الأعداد على يمين العلامة العشرية، ارفع العدد العشري إلى . وبعد ذلك، أضف العدد الصحيح على يسار العلامة العشرية.
خطوة 5.5.3.2
اختزِل الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.3.2.1
حوّل إلى كسر غير فعلي.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.3.2.1.1
العدد الكسري هو مجموع جزئيه الصحيح والكسري.
خطوة 5.5.3.2.1.2
أضف و.
خطوة 5.5.3.2.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.3.2.2.1
أخرِج العامل من .
خطوة 5.5.3.2.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.3.2.2.2.1
أخرِج العامل من .
خطوة 5.5.3.2.2.2.2
ألغِ العامل المشترك.
خطوة 5.5.3.2.2.2.3
أعِد كتابة العبارة.
خطوة 5.5.4
ارفع كل متعادل إلى القوة لحذف الأُس الكسري في الطرف الأيسر.
خطوة 5.5.5
بسّط الأُس.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.5.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.5.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.5.1.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.5.1.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 5.5.5.1.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.5.1.1.1.2.1
أخرِج العامل من .
خطوة 5.5.5.1.1.1.2.2
ألغِ العامل المشترك.
خطوة 5.5.5.1.1.1.2.3
أعِد كتابة العبارة.
خطوة 5.5.5.1.1.1.3
اقسِم على .
خطوة 5.5.5.1.1.2
بسّط.
خطوة 5.5.5.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.5.5.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 5.5.5.2.1.1
اقسِم على .
خطوة 5.5.5.2.1.2
ارفع إلى القوة .
خطوة 6
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
حوّل العبارات ذات الأُسس الكسرية إلى جذور.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
غيّر إلى كسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.1
اضرب في لحذف العلامة العشرية.
خطوة 6.1.1.2
اضرب في .
خطوة 6.1.1.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.1
أخرِج العامل من .
خطوة 6.1.1.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.2.1
أخرِج العامل من .
خطوة 6.1.1.3.2.2
ألغِ العامل المشترك.
خطوة 6.1.1.3.2.3
أعِد كتابة العبارة.
خطوة 6.1.2
طبّق القاعدة لإعادة كتابة الأُس في صورة جذر.
خطوة 6.1.3
ناتج رفع أي عدد إلى يساوي الأساس نفسه.
خطوة 6.2
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 6.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
لحذف الجذر في المتعادل الأيسر، ارفع كلا المتعادلين إلى القوة .
خطوة 6.3.2
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
استخدِم لكتابة في صورة .
خطوة 6.3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 6.3.2.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 6.3.2.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 6.3.2.2.1.2
بسّط.
خطوة 6.3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.4
عيّن قيمة المجذور في بحيث تصبح أصغر من لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 6.5
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 7
النقاط الحرجة اللازم حساب قيمتها.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
ارفع إلى القوة .
خطوة 9.2
اقسِم على .
خطوة 9.3
اضرب في .
خطوة 10
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
خطوة 11
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 11.1
استبدِل المتغير بـ في العبارة.
خطوة 11.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1.1
ارفع إلى القوة .
خطوة 11.2.1.2
اضرب في .
خطوة 11.2.1.3
اضرب في .
خطوة 11.2.2
بسّط عن طريق الجمع والطرح.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.2.1
اطرح من .
خطوة 11.2.2.2
أضف و.
خطوة 11.2.3
الإجابة النهائية هي .
خطوة 12
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 13
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 13.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 13.2
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
غير معرّف
خطوة 14
بما أن اختبار المشتق الأول فشل، إذن لا توجد قيم قصوى محلية.
لا توجد قيمة قصوى محلية
خطوة 15