حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية f(x)=32x^0.25
خطوة 1
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3
اضرب في .
خطوة 1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 1.4.2
اجمع و.
خطوة 2
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
طبّق القواعد الأساسية للأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
أعِد كتابة بالصيغة .
خطوة 2.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.2.2
اضرب في .
خطوة 2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.4
اضرب في .
خطوة 2.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 2.5.2
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.2.1
اجمع و.
خطوة 2.5.2.2
انقُل السالب أمام الكسر.
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.3
اضرب في .
خطوة 4.1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 4.1.4.2
اجمع و.
خطوة 4.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 5
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 5.2
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 5.3
بما أن ، إذن لا توجد حلول.
لا يوجد حل
لا يوجد حل
خطوة 6
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
حوّل العبارات ذات الأُسس الكسرية إلى جذور.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
غيّر إلى كسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.1
اضرب في لحذف العلامة العشرية.
خطوة 6.1.1.2
اضرب في .
خطوة 6.1.1.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.1
أخرِج العامل من .
خطوة 6.1.1.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1.3.2.1
أخرِج العامل من .
خطوة 6.1.1.3.2.2
ألغِ العامل المشترك.
خطوة 6.1.1.3.2.3
أعِد كتابة العبارة.
خطوة 6.1.2
طبّق القاعدة لإعادة كتابة الأُس في صورة جذر.
خطوة 6.2
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 6.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
لحذف الجذر في المتعادل الأيسر، ارفع كلا المتعادلين إلى القوة .
خطوة 6.3.2
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
استخدِم لكتابة في صورة .
خطوة 6.3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 6.3.2.2.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1.2.1
ألغِ العامل المشترك.
خطوة 6.3.2.2.1.2.2
أعِد كتابة العبارة.
خطوة 6.3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.3.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 6.3.3.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.2.1
أعِد كتابة بالصيغة .
خطوة 6.3.3.2.2
أخرِج الحدود من تحت الجذر، بافتراض أنها أعداد حقيقية.
خطوة 6.4
عيّن قيمة المجذور في بحيث تصبح أصغر من لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 6.5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.5.1
خُذ الجذر المحدد لكلا المتباينين لحذف الأُس على الطرف الأيسر.
خطوة 6.5.2
بسّط المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.1.1
أخرِج الحدود من تحت الجذر.
خطوة 6.5.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.2.1.1
أعِد كتابة بالصيغة .
خطوة 6.5.2.2.1.2
أخرِج الحدود من تحت الجذر.
خطوة 6.6
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 7
النقاط الحرجة اللازم حساب قيمتها.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 9.2
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
غير معرّف
خطوة 10
بما أن اختبار المشتق الأول فشل، إذن لا توجد قيم قصوى محلية.
لا توجد قيمة قصوى محلية
خطوة 11