حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية f(x)=3cos(x)-cos(x)^3
خطوة 1
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.2.3
اضرب في .
خطوة 1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.3
مشتق بالنسبة إلى يساوي .
خطوة 1.3.4
اضرب في .
خطوة 1.3.5
اضرب في .
خطوة 1.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
أعِد ترتيب الحدود.
خطوة 1.4.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.2.1
أخرِج العامل من .
خطوة 1.4.2.2
أخرِج العامل من .
خطوة 1.4.2.3
أخرِج العامل من .
خطوة 1.4.3
أعِد ترتيب و.
خطوة 1.4.4
أعِد كتابة بالصيغة .
خطوة 1.4.5
أخرِج العامل من .
خطوة 1.4.6
أخرِج العامل من .
خطوة 1.4.7
أعِد كتابة بالصيغة .
خطوة 1.4.8
طبّق متطابقة فيثاغورس.
خطوة 1.4.9
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.9.1
انقُل .
خطوة 1.4.9.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.9.2.1
ارفع إلى القوة .
خطوة 1.4.9.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.4.9.3
أضف و.
خطوة 1.4.10
اضرب في .
خطوة 2
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
اضرب في .
خطوة 2.4
مشتق بالنسبة إلى يساوي .
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اقسِم كل حد في على .
خطوة 4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.1.2
اقسِم على .
خطوة 4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
اقسِم على .
خطوة 5
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 6
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أعِد كتابة بالصيغة .
خطوة 6.2
أخرِج الحدود من تحت الجذر، بافتراض أنها أعداد حقيقية.
خطوة 7
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 8
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
القيمة الدقيقة لـ هي .
خطوة 9
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 10
اطرح من .
خطوة 11
حل المعادلة .
خطوة 12
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 13
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 13.1
القيمة الدقيقة لـ هي .
خطوة 13.2
ينتج عن رفع إلى أي قوة موجبة.
خطوة 13.3
اضرب في .
خطوة 13.4
القيمة الدقيقة لـ هي .
خطوة 13.5
اضرب في .
خطوة 14
نظرًا إلى وجود نقطة واحدة على الأقل بها أو مشتق ثانٍ غير معرّف، طبّق اختبار المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 14.1
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق الأول مساويًا لـ أو غير معرّف.
خطوة 14.2
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 14.2.1
استبدِل المتغير بـ في العبارة.
خطوة 14.2.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 14.2.2.1
احسِب قيمة .
خطوة 14.2.2.2
ارفع إلى القوة .
خطوة 14.2.2.3
اضرب في .
خطوة 14.2.2.4
الإجابة النهائية هي .
خطوة 14.3
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 14.3.1
استبدِل المتغير بـ في العبارة.
خطوة 14.3.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 14.3.2.1
احسِب قيمة .
خطوة 14.3.2.2
ارفع إلى القوة .
خطوة 14.3.2.3
اضرب في .
خطوة 14.3.2.4
الإجابة النهائية هي .
خطوة 14.4
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
انقر لعرض المزيد من الخطوات...
خطوة 14.4.1
استبدِل المتغير بـ في العبارة.
خطوة 14.4.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 14.4.2.1
احسِب قيمة .
خطوة 14.4.2.2
ارفع إلى القوة .
خطوة 14.4.2.3
اضرب في .
خطوة 14.4.2.4
الإجابة النهائية هي .
خطوة 14.5
بما أن علامة المشتق الأول تغيّرت من موجب إلى سالب حول ، إذن تمثل حدًا أقصى محليًا.
هي حد أقصى محلي
خطوة 14.6
بما أن علامة المشتق الأول تغيّرت من سالب إلى موجب حول ، إذن تمثل حدًا أدنى محليًا.
هي حد أدنى محلي
خطوة 14.7
هذه هي القيم القصوى المحلية لـ .
هي حد أقصى محلي
هي حد أدنى محلي
هي حد أقصى محلي
هي حد أدنى محلي
خطوة 15