إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.2.3
اضرب في .
خطوة 1.3
احسِب قيمة .
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.3
مشتق بالنسبة إلى يساوي .
خطوة 1.3.4
اضرب في .
خطوة 1.3.5
اضرب في .
خطوة 1.4
بسّط.
خطوة 1.4.1
أعِد ترتيب الحدود.
خطوة 1.4.2
أخرِج العامل من .
خطوة 1.4.2.1
أخرِج العامل من .
خطوة 1.4.2.2
أخرِج العامل من .
خطوة 1.4.2.3
أخرِج العامل من .
خطوة 1.4.3
أعِد ترتيب و.
خطوة 1.4.4
أعِد كتابة بالصيغة .
خطوة 1.4.5
أخرِج العامل من .
خطوة 1.4.6
أخرِج العامل من .
خطوة 1.4.7
أعِد كتابة بالصيغة .
خطوة 1.4.8
طبّق متطابقة فيثاغورس.
خطوة 1.4.9
اضرب في بجمع الأُسس.
خطوة 1.4.9.1
انقُل .
خطوة 1.4.9.2
اضرب في .
خطوة 1.4.9.2.1
ارفع إلى القوة .
خطوة 1.4.9.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.4.9.3
أضف و.
خطوة 1.4.10
اضرب في .
خطوة 2
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
اضرب في .
خطوة 2.4
مشتق بالنسبة إلى يساوي .
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
خطوة 4.1
اقسِم كل حد في على .
خطوة 4.2
بسّط الطرف الأيسر.
خطوة 4.2.1
ألغِ العامل المشترك لـ .
خطوة 4.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.1.2
اقسِم على .
خطوة 4.3
بسّط الطرف الأيمن.
خطوة 4.3.1
اقسِم على .
خطوة 5
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 6
خطوة 6.1
أعِد كتابة بالصيغة .
خطوة 6.2
أخرِج الحدود من تحت الجذر، بافتراض أنها أعداد حقيقية.
خطوة 7
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 8
خطوة 8.1
القيمة الدقيقة لـ هي .
خطوة 9
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 10
اطرح من .
خطوة 11
حل المعادلة .
خطوة 12
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 13
خطوة 13.1
القيمة الدقيقة لـ هي .
خطوة 13.2
ينتج عن رفع إلى أي قوة موجبة.
خطوة 13.3
اضرب في .
خطوة 13.4
القيمة الدقيقة لـ هي .
خطوة 13.5
اضرب في .
خطوة 14
خطوة 14.1
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق الأول مساويًا لـ أو غير معرّف.
خطوة 14.2
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 14.2.1
استبدِل المتغير بـ في العبارة.
خطوة 14.2.2
بسّط النتيجة.
خطوة 14.2.2.1
احسِب قيمة .
خطوة 14.2.2.2
ارفع إلى القوة .
خطوة 14.2.2.3
اضرب في .
خطوة 14.2.2.4
الإجابة النهائية هي .
خطوة 14.3
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 14.3.1
استبدِل المتغير بـ في العبارة.
خطوة 14.3.2
بسّط النتيجة.
خطوة 14.3.2.1
احسِب قيمة .
خطوة 14.3.2.2
ارفع إلى القوة .
خطوة 14.3.2.3
اضرب في .
خطوة 14.3.2.4
الإجابة النهائية هي .
خطوة 14.4
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 14.4.1
استبدِل المتغير بـ في العبارة.
خطوة 14.4.2
بسّط النتيجة.
خطوة 14.4.2.1
احسِب قيمة .
خطوة 14.4.2.2
ارفع إلى القوة .
خطوة 14.4.2.3
اضرب في .
خطوة 14.4.2.4
الإجابة النهائية هي .
خطوة 14.5
بما أن علامة المشتق الأول تغيّرت من موجب إلى سالب حول ، إذن تمثل حدًا أقصى محليًا.
هي حد أقصى محلي
خطوة 14.6
بما أن علامة المشتق الأول تغيّرت من سالب إلى موجب حول ، إذن تمثل حدًا أدنى محليًا.
هي حد أدنى محلي
خطوة 14.7
هذه هي القيم القصوى المحلية لـ .
هي حد أقصى محلي
هي حد أدنى محلي
هي حد أقصى محلي
هي حد أدنى محلي
خطوة 15