إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
احسِب قيمة .
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.5
اضرب في .
خطوة 1.3.6
اجمع و.
خطوة 1.3.7
ألغِ العامل المشترك لـ .
خطوة 1.3.7.1
ألغِ العامل المشترك.
خطوة 1.3.7.2
أعِد كتابة العبارة.
خطوة 1.3.8
اجمع و.
خطوة 1.4
أعِد ترتيب الحدود.
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أعِد كتابة بالصيغة .
خطوة 2.2.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.4
اضرب في .
خطوة 2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4
بسّط.
خطوة 2.4.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 2.4.2
جمّع الحدود.
خطوة 2.4.2.1
اجمع و.
خطوة 2.4.2.2
انقُل السالب أمام الكسر.
خطوة 2.4.2.3
أضف و.
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
خطوة 4.1
أوجِد المشتق الأول.
خطوة 4.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.2
احسِب قيمة .
خطوة 4.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.3
اضرب في .
خطوة 4.1.3
احسِب قيمة .
خطوة 4.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 4.1.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.1.3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 4.1.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.1.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.3.5
اضرب في .
خطوة 4.1.3.6
اجمع و.
خطوة 4.1.3.7
ألغِ العامل المشترك لـ .
خطوة 4.1.3.7.1
ألغِ العامل المشترك.
خطوة 4.1.3.7.2
أعِد كتابة العبارة.
خطوة 4.1.3.8
اجمع و.
خطوة 4.1.4
أعِد ترتيب الحدود.
خطوة 4.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 5
خطوة 5.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 5.2
أضف إلى كلا المتعادلين.
خطوة 5.3
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
خطوة 5.3.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 5.3.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 5.4
اضرب كل حد في في لحذف الكسور.
خطوة 5.4.1
اضرب كل حد في في .
خطوة 5.4.2
بسّط الطرف الأيسر.
خطوة 5.4.2.1
ألغِ العامل المشترك لـ .
خطوة 5.4.2.1.1
ألغِ العامل المشترك.
خطوة 5.4.2.1.2
أعِد كتابة العبارة.
خطوة 5.5
أوجِد حل المعادلة.
خطوة 5.5.1
أعِد كتابة المعادلة في صورة .
خطوة 5.5.2
اقسِم كل حد في على وبسّط.
خطوة 5.5.2.1
اقسِم كل حد في على .
خطوة 5.5.2.2
بسّط الطرف الأيسر.
خطوة 5.5.2.2.1
ألغِ العامل المشترك لـ .
خطوة 5.5.2.2.1.1
ألغِ العامل المشترك.
خطوة 5.5.2.2.1.2
اقسِم على .
خطوة 5.5.2.3
بسّط الطرف الأيمن.
خطوة 5.5.2.3.1
اقسِم على .
خطوة 6
خطوة 6.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 7
النقاط الحرجة اللازم حساب قيمتها.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
خطوة 9.1
ارفع إلى القوة .
خطوة 9.2
احذِف العامل المشترك لـ و.
خطوة 9.2.1
أخرِج العامل من .
خطوة 9.2.2
ألغِ العوامل المشتركة.
خطوة 9.2.2.1
أخرِج العامل من .
خطوة 9.2.2.2
ألغِ العامل المشترك.
خطوة 9.2.2.3
أعِد كتابة العبارة.
خطوة 10
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
خطوة 11
خطوة 11.1
استبدِل المتغير بـ في العبارة.
خطوة 11.2
بسّط النتيجة.
خطوة 11.2.1
بسّط كل حد.
خطوة 11.2.1.1
اضرب في .
خطوة 11.2.1.2
اضرب في .
خطوة 11.2.1.3
بسّط بنقل داخل اللوغاريتم.
خطوة 11.2.1.4
ارفع إلى القوة .
خطوة 11.2.2
الإجابة النهائية هي .
خطوة 12
هذه هي القيم القصوى المحلية لـ .
هي نقطة قصوى محلية
خطوة 13