إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
خطوة 1.2.1
اضرب في .
خطوة 1.2.2
ارفع إلى القوة .
خطوة 1.2.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.2.4
أضف و.
خطوة 1.2.5
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.7
اضرب في .
خطوة 1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.4
احسِب قيمة .
خطوة 1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4.3
اضرب في .
خطوة 1.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.6
بسّط.
خطوة 1.6.1
جمّع الحدود.
خطوة 1.6.1.1
أضف و.
خطوة 1.6.1.2
أضف و.
خطوة 1.6.2
أعِد ترتيب الحدود.
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
اضرب في .
خطوة 2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4
بسّط.
خطوة 2.4.1
أضف و.
خطوة 2.4.2
أعِد ترتيب عوامل .
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
خطوة 4.1
أوجِد المشتق الأول.
خطوة 4.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.2
احسِب قيمة .
خطوة 4.1.2.1
اضرب في .
خطوة 4.1.2.2
ارفع إلى القوة .
خطوة 4.1.2.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.1.2.4
أضف و.
خطوة 4.1.2.5
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.7
اضرب في .
خطوة 4.1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.4
احسِب قيمة .
خطوة 4.1.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.4.3
اضرب في .
خطوة 4.1.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.6
بسّط.
خطوة 4.1.6.1
جمّع الحدود.
خطوة 4.1.6.1.1
أضف و.
خطوة 4.1.6.1.2
أضف و.
خطوة 4.1.6.2
أعِد ترتيب الحدود.
خطوة 4.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 5
خطوة 5.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 5.2
أضف إلى كلا المتعادلين.
خطوة 5.3
اقسِم كل حد في على وبسّط.
خطوة 5.3.1
اقسِم كل حد في على .
خطوة 5.3.2
بسّط الطرف الأيسر.
خطوة 5.3.2.1
ألغِ العامل المشترك لـ .
خطوة 5.3.2.1.1
ألغِ العامل المشترك.
خطوة 5.3.2.1.2
أعِد كتابة العبارة.
خطوة 5.3.2.2
ألغِ العامل المشترك لـ .
خطوة 5.3.2.2.1
ألغِ العامل المشترك.
خطوة 5.3.2.2.2
اقسِم على .
خطوة 5.3.3
بسّط الطرف الأيمن.
خطوة 5.3.3.1
احذِف العامل المشترك لـ و.
خطوة 5.3.3.1.1
أخرِج العامل من .
خطوة 5.3.3.1.2
ألغِ العوامل المشتركة.
خطوة 5.3.3.1.2.1
أخرِج العامل من .
خطوة 5.3.3.1.2.2
ألغِ العامل المشترك.
خطوة 5.3.3.1.2.3
أعِد كتابة العبارة.
خطوة 5.4
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 5.5
بسّط .
خطوة 5.5.1
أعِد كتابة بالصيغة .
خطوة 5.5.1.1
أخرِج عامل القوة الكاملة من .
خطوة 5.5.1.2
أخرِج عامل القوة الكاملة من .
خطوة 5.5.1.3
أعِد ترتيب الكسر .
خطوة 5.5.2
أخرِج الحدود من تحت الجذر.
خطوة 5.5.3
أعِد كتابة بالصيغة .
خطوة 5.5.4
أي جذر لـ هو .
خطوة 5.5.5
اضرب في .
خطوة 5.5.6
جمّع وبسّط القاسم.
خطوة 5.5.6.1
اضرب في .
خطوة 5.5.6.2
ارفع إلى القوة .
خطوة 5.5.6.3
ارفع إلى القوة .
خطوة 5.5.6.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.5.6.5
أضف و.
خطوة 5.5.6.6
أعِد كتابة بالصيغة .
خطوة 5.5.6.6.1
استخدِم لكتابة في صورة .
خطوة 5.5.6.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 5.5.6.6.3
اجمع و.
خطوة 5.5.6.6.4
ألغِ العامل المشترك لـ .
خطوة 5.5.6.6.4.1
ألغِ العامل المشترك.
خطوة 5.5.6.6.4.2
أعِد كتابة العبارة.
خطوة 5.5.6.6.5
بسّط.
خطوة 5.5.7
اضرب في .
خطوة 5.6
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5.6.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 5.6.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 5.6.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 6
خطوة 6.1
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
خطوة 7
النقاط الحرجة اللازم حساب قيمتها.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
خطوة 9.1
ألغِ العامل المشترك لـ .
خطوة 9.1.1
أخرِج العامل من .
خطوة 9.1.2
أخرِج العامل من .
خطوة 9.1.3
ألغِ العامل المشترك.
خطوة 9.1.4
أعِد كتابة العبارة.
خطوة 9.2
اجمع و.
خطوة 9.3
ألغِ العامل المشترك لـ .
خطوة 9.3.1
ألغِ العامل المشترك.
خطوة 9.3.2
أعِد كتابة العبارة.
خطوة 10
خطوة 10.1
قسّم إلى فترات منفصلة حول قيم التي تجعل المشتق الأول مساويًا لـ أو غير معرّف.
خطوة 10.2
عوّض بأي عدد، مثل ، من الفترة في المشتق الأول للتحقق مما إذا كانت النتيجة سالبة أم موجبة.
خطوة 10.2.1
استبدِل المتغير بـ في العبارة.
خطوة 10.2.2
بسّط النتيجة.
خطوة 10.2.2.1
بسّط كل حد.
خطوة 10.2.2.1.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 10.2.2.1.2
اضرب في .
خطوة 10.2.2.1.3
اضرب في .
خطوة 10.2.2.2
اطرح من .
خطوة 10.2.2.3
الإجابة النهائية هي .
خطوة 10.3
لا توجد نقاط قصوى أو دنيا محلية لـ .
لا توجد نقاط قصوى أو دنيا محلية
لا توجد نقاط قصوى أو دنيا محلية
خطوة 11