حساب التفاضل والتكامل الأمثلة

أوجد القيمة العظمى المحلية والقيمة الصغرى المحلية f(x)=2x- الجذر التربيعي لـ 16-x^2
خطوة 1
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
استخدِم لكتابة في صورة .
خطوة 1.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.6
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.8
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.3.9
اجمع و.
خطوة 1.3.10
اجمع البسوط على القاسم المشترك.
خطوة 1.3.11
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.11.1
اضرب في .
خطوة 1.3.11.2
اطرح من .
خطوة 1.3.12
انقُل السالب أمام الكسر.
خطوة 1.3.13
اضرب في .
خطوة 1.3.14
اطرح من .
خطوة 1.3.15
اجمع و.
خطوة 1.3.16
اجمع و.
خطوة 1.3.17
اجمع و.
خطوة 1.3.18
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.3.19
أخرِج العامل من .
خطوة 1.3.20
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.20.1
أخرِج العامل من .
خطوة 1.3.20.2
ألغِ العامل المشترك.
خطوة 1.3.20.3
أعِد كتابة العبارة.
خطوة 1.3.21
انقُل السالب أمام الكسر.
خطوة 1.3.22
اضرب في .
خطوة 1.3.23
اضرب في .
خطوة 1.4
أعِد ترتيب الحدود.
خطوة 2
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.2.6
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.8
اضرب في .
خطوة 2.2.9
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.2.10
اجمع و.
خطوة 2.2.11
اجمع البسوط على القاسم المشترك.
خطوة 2.2.12
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.12.1
اضرب في .
خطوة 2.2.12.2
اطرح من .
خطوة 2.2.13
انقُل السالب أمام الكسر.
خطوة 2.2.14
اضرب في .
خطوة 2.2.15
اطرح من .
خطوة 2.2.16
اجمع و.
خطوة 2.2.17
اجمع و.
خطوة 2.2.18
اجمع و.
خطوة 2.2.19
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 2.2.20
أخرِج العامل من .
خطوة 2.2.21
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.21.1
أخرِج العامل من .
خطوة 2.2.21.2
ألغِ العامل المشترك.
خطوة 2.2.21.3
أعِد كتابة العبارة.
خطوة 2.2.22
انقُل السالب أمام الكسر.
خطوة 2.2.23
اضرب في .
خطوة 2.2.24
اضرب في .
خطوة 2.2.25
اجمع و.
خطوة 2.2.26
ارفع إلى القوة .
خطوة 2.2.27
ارفع إلى القوة .
خطوة 2.2.28
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.29
أضف و.
خطوة 2.2.30
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.2.31
اجمع البسوط على القاسم المشترك.
خطوة 2.2.32
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.32.1
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.32.2
اجمع البسوط على القاسم المشترك.
خطوة 2.2.32.3
أضف و.
خطوة 2.2.32.4
اقسِم على .
خطوة 2.2.33
بسّط .
خطوة 2.2.34
أضف و.
خطوة 2.2.35
أضف و.
خطوة 2.2.36
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.36.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.36.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.36.2.1
ألغِ العامل المشترك.
خطوة 2.2.36.2.2
أعِد كتابة العبارة.
خطوة 2.2.37
بسّط.
خطوة 2.2.38
أعِد كتابة في صورة حاصل ضرب.
خطوة 2.2.39
اضرب في .
خطوة 2.2.40
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.40.1
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.40.1.1
ارفع إلى القوة .
خطوة 2.2.40.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.40.2
اكتب في صورة كسر ذي قاسم مشترك.
خطوة 2.2.40.3
اجمع البسوط على القاسم المشترك.
خطوة 2.2.40.4
أضف و.
خطوة 2.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
أضف و.
خطوة 2.4.2
أعِد ترتيب الحدود.
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.2.3
اضرب في .
خطوة 4.1.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.1
استخدِم لكتابة في صورة .
خطوة 4.1.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.1.3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.1.3.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.1.3.6
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.1.3.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.1.3.8
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.1.3.9
اجمع و.
خطوة 4.1.3.10
اجمع البسوط على القاسم المشترك.
خطوة 4.1.3.11
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.11.1
اضرب في .
خطوة 4.1.3.11.2
اطرح من .
خطوة 4.1.3.12
انقُل السالب أمام الكسر.
خطوة 4.1.3.13
اضرب في .
خطوة 4.1.3.14
اطرح من .
خطوة 4.1.3.15
اجمع و.
خطوة 4.1.3.16
اجمع و.
خطوة 4.1.3.17
اجمع و.
خطوة 4.1.3.18
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 4.1.3.19
أخرِج العامل من .
خطوة 4.1.3.20
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.3.20.1
أخرِج العامل من .
خطوة 4.1.3.20.2
ألغِ العامل المشترك.
خطوة 4.1.3.20.3
أعِد كتابة العبارة.
خطوة 4.1.3.21
انقُل السالب أمام الكسر.
خطوة 4.1.3.22
اضرب في .
خطوة 4.1.3.23
اضرب في .
خطوة 4.1.4
أعِد ترتيب الحدود.
خطوة 4.2
المشتق الأول لـ بالنسبة إلى هو .
خطوة 5
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ ثم أوجِد حل المعادلة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عيّن قيمة المشتق الأول بحيث تصبح مساوية لـ .
خطوة 5.2
مثّل كل متعادل بيانيًا. الحل هو قيمة x لنقطة التقاطع.
خطوة 6
أوجِد القيم التي يكون عندها المشتق غير معرّف.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
حوّل العبارات ذات الأُسس الكسرية إلى جذور.
انقر لعرض المزيد من الخطوات...
خطوة 6.1.1
طبّق القاعدة لإعادة كتابة الأُس في صورة جذر.
خطوة 6.1.2
ناتج رفع أي عدد إلى يساوي الأساس نفسه.
خطوة 6.2
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 6.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 6.3.2
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
استخدِم لكتابة في صورة .
خطوة 6.3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 6.3.2.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 6.3.2.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 6.3.2.2.1.2
بسّط.
خطوة 6.3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.3.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.1
اطرح من كلا المتعادلين.
خطوة 6.3.3.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.2.1
اقسِم كل حد في على .
خطوة 6.3.3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 6.3.3.2.2.2
اقسِم على .
خطوة 6.3.3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.2.3.1
اقسِم على .
خطوة 6.3.3.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 6.3.3.4
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.4.1
أعِد كتابة بالصيغة .
خطوة 6.3.3.4.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 6.3.3.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 6.3.3.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 6.3.3.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 6.4
عيّن قيمة المجذور في بحيث تصبح أصغر من لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 6.5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.5.1
اطرح من كلا طرفي المتباينة.
خطوة 6.5.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.1
اقسِم كل حد في على . وعند ضرب كلا طرفي المتباينة في قيمة سالبة أو قسمتهما عليها، اعكس اتجاه علامة المتباينة.
خطوة 6.5.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 6.5.2.2.2
اقسِم على .
خطوة 6.5.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.2.3.1
اقسِم على .
خطوة 6.5.3
خُذ الجذر المحدد لكلا المتباينين لحذف الأُس على الطرف الأيسر.
خطوة 6.5.4
بسّط المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.4.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.4.1.1
أخرِج الحدود من تحت الجذر.
خطوة 6.5.4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.4.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.5.4.2.1.1
أعِد كتابة بالصيغة .
خطوة 6.5.4.2.1.2
أخرِج الحدود من تحت الجذر.
خطوة 6.5.4.2.1.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 6.5.5
اكتب في صورة دالة قطع متتابعة.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.5.1
لإيجاد الفترة للجزء الأول، أوجِد الموضع الذي تكون فيه قيمة ما بين شريطَي القيمة المطلقة غير سالبة.
خطوة 6.5.5.2
في الجزء الذي يكون فيه غير سالب، احذف القيمة المطلقة.
خطوة 6.5.5.3
لإيجاد الفترة للجزء الثاني، أوجِد الموضع الذي تكون فيه قيمة ما بين شريطَي القيمة المطلقة سالبة.
خطوة 6.5.5.4
في الجزء الذي يكون فيه سالبًا، احذف القيمة المطلقة واضرب في .
خطوة 6.5.5.5
اكتب في صورة دالة قطع متتابعة.
خطوة 6.5.6
أوجِد التقاطع بين و.
خطوة 6.5.7
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.7.1
اقسِم كل حد في على . وعند ضرب كلا طرفي المتباينة في قيمة سالبة أو قسمتهما عليها، اعكس اتجاه علامة المتباينة.
خطوة 6.5.7.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.7.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 6.5.7.2.2
اقسِم على .
خطوة 6.5.7.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.5.7.3.1
اقسِم على .
خطوة 6.5.8
أوجِد اتحاد الحلول.
أو
أو
خطوة 6.6
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 7
النقاط الحرجة اللازم حساب قيمتها.
خطوة 8
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 9
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 9.1
بسّط القاسم.
انقر لعرض المزيد من الخطوات...
خطوة 9.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 9.1.1.1
ارفع إلى القوة .
خطوة 9.1.1.2
اضرب في .
خطوة 9.1.2
أضف و.
خطوة 9.1.3
أعِد كتابة بالصيغة .
خطوة 9.1.4
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 9.1.5
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 9.1.5.1
ألغِ العامل المشترك.
خطوة 9.1.5.2
أعِد كتابة العبارة.
خطوة 9.1.6
ارفع إلى القوة .
خطوة 9.2
اقسِم على .
خطوة 10
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
خطوة 11
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 11.1
استبدِل المتغير بـ في العبارة.
خطوة 11.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1.1
اضرب في .
خطوة 11.2.1.2
ارفع إلى القوة .
خطوة 11.2.1.3
اضرب في .
خطوة 11.2.1.4
اطرح من .
خطوة 11.2.2
اطرح من .
خطوة 11.2.3
الإجابة النهائية هي .
خطوة 12
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 13
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 13.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 13.1.1
ارفع إلى القوة .
خطوة 13.1.2
اضرب في .
خطوة 13.2
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 13.2.1
أضف و.
خطوة 13.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 13.2.2.1
أعِد كتابة بالصيغة .
خطوة 13.2.2.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 13.2.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 13.2.3.1
ألغِ العامل المشترك.
خطوة 13.2.3.2
أعِد كتابة العبارة.
خطوة 13.2.4
ينتج عن رفع إلى أي قوة موجبة.
خطوة 13.2.5
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 13.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
غير معرّف
خطوة 14
بما أن اختبار المشتق الأول فشل، إذن لا توجد قيم قصوى محلية.
لا توجد قيمة قصوى محلية
خطوة 15