إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.1.2.1
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.2
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.3
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.1.2.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.2.5
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 1.1.2.6
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.7
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.2.8
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.1.2.8.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.8.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.9
بسّط الإجابة.
خطوة 1.1.2.9.1
بسّط كل حد.
خطوة 1.1.2.9.1.1
ارفع إلى القوة .
خطوة 1.1.2.9.1.2
اضرب في .
خطوة 1.1.2.9.2
اطرح من .
خطوة 1.1.2.9.3
اضرب في .
خطوة 1.1.2.9.4
اطرح من .
خطوة 1.1.2.9.5
القيمة الدقيقة لـ هي .
خطوة 1.1.2.9.6
اضرب في .
خطوة 1.1.3
احسِب قيمة حد القاسم.
خطوة 1.1.3.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.2
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.1.3.3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 1.1.3.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.3.5
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.1.3.5.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.5.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.6
بسّط الإجابة.
خطوة 1.1.3.6.1
بسّط كل حد.
خطوة 1.1.3.6.1.1
ارفع إلى القوة .
خطوة 1.1.3.6.1.2
اضرب في .
خطوة 1.1.3.6.2
اطرح من .
خطوة 1.1.3.6.3
أضف و.
خطوة 1.1.3.6.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.3.7
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.3.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.3.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.3.2
مشتق بالنسبة إلى يساوي .
خطوة 1.3.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.7
أضف و.
خطوة 1.3.8
اضرب في .
خطوة 1.3.9
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.10
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.11
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.12
أضف و.
خطوة 1.3.13
أعِد ترتيب الحدود.
خطوة 1.3.14
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.15
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.16
احسِب قيمة .
خطوة 1.3.16.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.16.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.16.3
اضرب في .
خطوة 1.3.17
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.18
أضف و.
خطوة 2
خطوة 2.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 2.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 2.1.2
احسِب قيمة حد بسط الكسر.
خطوة 2.1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.2
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.3
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 2.1.2.4
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.5
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.2.6
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.7
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 2.1.2.8
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.2.9
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.1.2.10
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.11
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 2.1.2.12
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.2.13
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.2.14
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 2.1.2.14.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.14.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.14.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.14.4
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.15
بسّط الإجابة.
خطوة 2.1.2.15.1
بسّط كل حد.
خطوة 2.1.2.15.1.1
اضرب في .
خطوة 2.1.2.15.1.2
اطرح من .
خطوة 2.1.2.15.1.3
القيمة الدقيقة لـ هي .
خطوة 2.1.2.15.1.4
اضرب في .
خطوة 2.1.2.15.1.5
بسّط كل حد.
خطوة 2.1.2.15.1.5.1
ارفع إلى القوة .
خطوة 2.1.2.15.1.5.2
اضرب في .
خطوة 2.1.2.15.1.6
اطرح من .
خطوة 2.1.2.15.1.7
اضرب في .
خطوة 2.1.2.15.1.8
اضرب في .
خطوة 2.1.2.15.1.9
اطرح من .
خطوة 2.1.2.15.1.10
القيمة الدقيقة لـ هي .
خطوة 2.1.2.15.1.11
اضرب في .
خطوة 2.1.2.15.2
أضف و.
خطوة 2.1.3
احسِب قيمة حد القاسم.
خطوة 2.1.3.1
احسِب قيمة النهاية.
خطوة 2.1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.3.1.2
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.1.3.1.3
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.3.3
بسّط الإجابة.
خطوة 2.1.3.3.1
بسّط كل حد.
خطوة 2.1.3.3.1.1
اضرب في .
خطوة 2.1.3.3.1.2
اضرب في .
خطوة 2.1.3.3.2
اطرح من .
خطوة 2.1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 2.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 2.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 2.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3
احسِب قيمة .
خطوة 2.3.3.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3.5
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.3.5.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.3.5.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3.3.5.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.3.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3.8
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3.9
أضف و.
خطوة 2.3.3.10
أضف و.
خطوة 2.3.3.11
اضرب في .
خطوة 2.3.4
احسِب قيمة .
خطوة 2.3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.4.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3.4.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.4.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.4.3.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3.4.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.4.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.4.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.4.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.4.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.4.8
أضف و.
خطوة 2.3.4.9
اضرب في .
خطوة 2.3.4.10
اضرب في .
خطوة 2.3.5
بسّط.
خطوة 2.3.5.1
طبّق خاصية التوزيع.
خطوة 2.3.5.2
أضف و.
خطوة 2.3.5.2.1
انقُل .
خطوة 2.3.5.2.2
أضف و.
خطوة 2.3.5.3
أعِد ترتيب الحدود.
خطوة 2.3.5.4
بسّط كل حد.
خطوة 2.3.5.4.1
طبّق خاصية التوزيع.
خطوة 2.3.5.4.2
اضرب في .
خطوة 2.3.5.5
أضف و.
خطوة 2.3.5.6
أعِد ترتيب العوامل في .
خطوة 2.3.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.7
احسِب قيمة .
خطوة 2.3.7.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.7.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.7.3
اضرب في .
خطوة 2.3.8
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.9
أضف و.
خطوة 3
خطوة 3.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.2
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.3
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.4
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 3.5
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة جيب التمام متصلة.
خطوة 3.6
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.7
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 3.8
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 3.9
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 3.10
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 3.11
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.12
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 3.13
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 3.14
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة الجيب متصلة.
خطوة 3.15
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 3.16
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 4
خطوة 4.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.4
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.5
احسِب قيمة حد بالتعويض عن بـ .
خطوة 5
خطوة 5.1
بسّط كل حد.
خطوة 5.1.1
اضرب في .
خطوة 5.1.2
اضرب في .
خطوة 5.1.3
اطرح من .
خطوة 5.1.4
القيمة الدقيقة لـ هي .
خطوة 5.1.5
اضرب في .
خطوة 5.1.6
ارفع إلى القوة .
خطوة 5.1.7
اضرب في .
خطوة 5.1.8
اضرب في .
خطوة 5.1.9
اطرح من .
خطوة 5.1.10
القيمة الدقيقة لـ هي .
خطوة 5.1.11
اضرب في .
خطوة 5.1.12
اضرب في .
خطوة 5.1.13
اطرح من .
خطوة 5.1.14
القيمة الدقيقة لـ هي .
خطوة 5.1.15
اضرب في .
خطوة 5.2
أضف و.
خطوة 5.3
أضف و.
خطوة 5.4
ألغِ العامل المشترك لـ .
خطوة 5.4.1
أخرِج العامل من .
خطوة 5.4.2
ألغِ العامل المشترك.
خطوة 5.4.3
أعِد كتابة العبارة.