إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3
احسِب قيمة حد القاسم.
خطوة 1.1.3.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.2
انقُل النهاية إلى الأُس.
خطوة 1.1.3.3
انقُل النهاية إلى الأُس.
خطوة 1.1.3.4
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.1.3.4.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.4.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.5
بسّط الإجابة.
خطوة 1.1.3.5.1
بسّط كل حد.
خطوة 1.1.3.5.1.1
أي شيء مرفوع إلى هو .
خطوة 1.1.3.5.1.2
أي شيء مرفوع إلى هو .
خطوة 1.1.3.5.1.3
اضرب في .
خطوة 1.1.3.5.2
اطرح من .
خطوة 1.1.3.5.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.3.6
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.4
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.3.5
احسِب قيمة .
خطوة 1.3.5.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.5.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2
خطوة 2.1
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 2.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.4
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.5
انقُل النهاية إلى الأُس.
خطوة 2.6
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.7
انقُل النهاية إلى الأُس.
خطوة 3
خطوة 3.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4
خطوة 4.1
أي شيء مرفوع إلى هو .
خطوة 4.2
اضرب في .
خطوة 4.3
أي شيء مرفوع إلى هو .
خطوة 4.4
اضرب في .
خطوة 4.5
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 4.6
اقسِم على .
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: