إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.1.2.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.2
انقُل النهاية أسفل علامة الجذر.
خطوة 1.1.2.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.2.5
انقُل النهاية أسفل علامة الجذر.
خطوة 1.1.2.6
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.2.7
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.2.8
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 1.1.2.8.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.8.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.9
بسّط الإجابة.
خطوة 1.1.2.9.1
بسّط كل حد.
خطوة 1.1.2.9.1.1
أضف و.
خطوة 1.1.2.9.1.2
أي جذر لـ هو .
خطوة 1.1.2.9.1.3
أضف و.
خطوة 1.1.2.9.1.4
أي جذر لـ هو .
خطوة 1.1.2.9.1.5
اضرب في .
خطوة 1.1.2.9.2
اطرح من .
خطوة 1.1.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3
احسِب قيمة .
خطوة 1.3.3.1
استخدِم لكتابة في صورة .
خطوة 1.3.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.3.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.3.6
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.3.3.7
اجمع و.
خطوة 1.3.3.8
اجمع البسوط على القاسم المشترك.
خطوة 1.3.3.9
بسّط بَسْط الكسر.
خطوة 1.3.3.9.1
اضرب في .
خطوة 1.3.3.9.2
اطرح من .
خطوة 1.3.3.10
انقُل السالب أمام الكسر.
خطوة 1.3.3.11
أضف و.
خطوة 1.3.3.12
اجمع و.
خطوة 1.3.3.13
اضرب في .
خطوة 1.3.3.14
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.3.4
احسِب قيمة .
خطوة 1.3.4.1
استخدِم لكتابة في صورة .
خطوة 1.3.4.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.4.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.3.4.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.4.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.4.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.4.4
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.4.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.4.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.4.7
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.3.4.8
اجمع و.
خطوة 1.3.4.9
اجمع البسوط على القاسم المشترك.
خطوة 1.3.4.10
بسّط بَسْط الكسر.
خطوة 1.3.4.10.1
اضرب في .
خطوة 1.3.4.10.2
اطرح من .
خطوة 1.3.4.11
انقُل السالب أمام الكسر.
خطوة 1.3.4.12
أضف و.
خطوة 1.3.4.13
اجمع و.
خطوة 1.3.4.14
اضرب في .
خطوة 1.3.4.15
انقُل إلى القاسم باستخدام قاعدة الأُسس السالبة .
خطوة 1.3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4
جمّع الحدود.
خطوة 1.4.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.4.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.4.3
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 1.4.3.1
اضرب في .
خطوة 1.4.3.2
اضرب في .
خطوة 1.4.3.3
اضرب في .
خطوة 1.4.3.4
اضرب في .
خطوة 1.4.3.5
اضرب في بجمع الأُسس.
خطوة 1.4.3.5.1
انقُل .
خطوة 1.4.3.5.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.4.3.5.3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.4.3.5.4
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 1.4.3.5.4.1
اضرب في .
خطوة 1.4.3.5.4.2
اضرب في .
خطوة 1.4.3.5.5
اجمع البسوط على القاسم المشترك.
خطوة 1.4.3.5.6
بسّط بَسْط الكسر.
خطوة 1.4.3.5.6.1
اضرب في .
خطوة 1.4.3.5.6.2
أضف و.
خطوة 1.4.3.5.7
احذِف العامل المشترك لـ و.
خطوة 1.4.3.5.7.1
أخرِج العامل من .
خطوة 1.4.3.5.7.2
ألغِ العوامل المشتركة.
خطوة 1.4.3.5.7.2.1
أخرِج العامل من .
خطوة 1.4.3.5.7.2.2
ألغِ العامل المشترك.
خطوة 1.4.3.5.7.2.3
أعِد كتابة العبارة.
خطوة 1.4.4
اجمع البسوط على القاسم المشترك.
خطوة 1.5
اقسِم على .
خطوة 2
خطوة 2.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.2
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 2.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.5
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.6
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 2.7
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.8
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.9
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 2.10
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.11
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 3
خطوة 3.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4
خطوة 4.1
بسّط بَسْط الكسر.
خطوة 4.1.1
أضف و.
خطوة 4.1.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.1.3
اضرب في .
خطوة 4.1.4
اطرح من .
خطوة 4.2
بسّط القاسم.
خطوة 4.2.1
أضف و.
خطوة 4.2.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 4.3
اقسِم على .
خطوة 4.4
اجمع و.
خطوة 4.5
انقُل السالب أمام الكسر.
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: