إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 1.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 1.1.2
احسِب قيمة حد بسط الكسر.
خطوة 1.1.2.1
احسِب قيمة النهاية.
خطوة 1.1.2.1.1
انقُل الأُس من خارج النهاية باستخدام قاعدة القوة للنهايات.
خطوة 1.1.2.1.2
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة المماس متصلة.
خطوة 1.1.2.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.2.3
بسّط الإجابة.
خطوة 1.1.2.3.1
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن المماس سالب في الربع الثاني.
خطوة 1.1.2.3.2
القيمة الدقيقة لـ هي .
خطوة 1.1.2.3.3
اضرب في .
خطوة 1.1.2.3.4
ينتج عن رفع إلى أي قوة موجبة.
خطوة 1.1.3
احسِب قيمة حد القاسم.
خطوة 1.1.3.1
احسِب قيمة النهاية.
خطوة 1.1.3.1.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 1.1.3.1.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 1.1.3.1.3
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة القاطع متصلة.
خطوة 1.1.3.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 1.1.3.3
بسّط الإجابة.
خطوة 1.1.3.3.1
بسّط كل حد.
خطوة 1.1.3.3.1.1
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن القاطع سالب في الربع الثاني.
خطوة 1.1.3.3.1.2
القيمة الدقيقة لـ هي .
خطوة 1.1.3.3.1.3
اضرب في .
خطوة 1.1.3.3.2
اطرح من .
خطوة 1.1.3.3.3
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.3.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 1.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 1.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 1.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 1.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3.3
مشتق بالنسبة إلى يساوي .
خطوة 1.3.4
أعِد ترتيب عوامل .
خطوة 1.3.5
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.6
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.7
مشتق بالنسبة إلى يساوي .
خطوة 1.3.8
أضف و.
خطوة 1.4
اختزِل.
خطوة 1.4.1
احذِف العامل المشترك لـ و.
خطوة 1.4.1.1
أخرِج العامل من .
خطوة 1.4.1.2
ألغِ العوامل المشتركة.
خطوة 1.4.1.2.1
أخرِج العامل من .
خطوة 1.4.1.2.2
ألغِ العامل المشترك.
خطوة 1.4.1.2.3
أعِد كتابة العبارة.
خطوة 1.4.2
ألغِ العامل المشترك لـ .
خطوة 1.4.2.1
ألغِ العامل المشترك.
خطوة 1.4.2.2
اقسِم على .
خطوة 2
خطوة 2.1
انقُل الحد خارج النهاية لأنه ثابت بالنسبة إلى .
خطوة 2.2
انقُل النهاية داخل الدالة المثلثية نظرًا إلى أن دالة القاطع متصلة.
خطوة 3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4
خطوة 4.1
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن القاطع سالب في الربع الثاني.
خطوة 4.2
القيمة الدقيقة لـ هي .
خطوة 4.3
اضرب .
خطوة 4.3.1
اضرب في .
خطوة 4.3.2
اضرب في .