إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.3
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 1.3.1
اضرب في .
خطوة 1.3.2
اضرب في .
خطوة 1.3.3
أعِد ترتيب عوامل .
خطوة 1.4
اجمع البسوط على القاسم المشترك.
خطوة 2
خطوة 2.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 2.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 2.1.2
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 2.1.2.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.2.2
بسّط كل حد.
خطوة 2.1.2.2.1
اطرح من .
خطوة 2.1.2.2.2
اللوغاريتم الطبيعي لـ يساوي .
خطوة 2.1.2.2.3
اطرح من .
خطوة 2.1.2.2.4
اضرب في .
خطوة 2.1.2.3
أضف و.
خطوة 2.1.3
احسِب قيمة حد القاسم.
خطوة 2.1.3.1
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 2.1.3.2
انقُل النهاية داخل اللوغاريتم.
خطوة 2.1.3.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.3.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.3.5
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 2.1.3.6
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 2.1.3.7
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 2.1.3.7.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.3.7.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 2.1.3.8
بسّط الإجابة.
خطوة 2.1.3.8.1
اضرب في .
خطوة 2.1.3.8.2
اطرح من .
خطوة 2.1.3.8.3
اللوغاريتم الطبيعي لـ يساوي .
خطوة 2.1.3.8.4
اضرب في .
خطوة 2.1.3.8.5
اطرح من .
خطوة 2.1.3.8.6
اضرب في .
خطوة 2.1.3.8.7
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.3.9
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 2.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 2.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 2.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 2.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3
احسِب قيمة .
خطوة 2.3.3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.3.1.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3.3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3.5
أضف و.
خطوة 2.3.3.6
اضرب في .
خطوة 2.3.4
احسِب قيمة .
خطوة 2.3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.4.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.4.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.4.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.4.5
أضف و.
خطوة 2.3.4.6
اضرب في .
خطوة 2.3.5
جمّع الحدود.
خطوة 2.3.5.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.3.5.2
اجمع و.
خطوة 2.3.5.3
اجمع البسوط على القاسم المشترك.
خطوة 2.3.6
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3.7
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.8
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.10
أضف و.
خطوة 2.3.11
اضرب في .
خطوة 2.3.12
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.12.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.12.2
مشتق بالنسبة إلى يساوي .
خطوة 2.3.12.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.13
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.14
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.15
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.16
أضف و.
خطوة 2.3.17
اضرب في .
خطوة 2.3.18
أعِد ترتيب الحدود.
خطوة 2.4
اضرب بسط الكسر في مقلوب القاسم.
خطوة 2.5
اضرب في .
خطوة 2.6
اضرب في .
خطوة 2.7
جمّع الحدود.
خطوة 2.7.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.7.2
اجمع البسوط على القاسم المشترك.
خطوة 3
خطوة 3.1
اضرب في .
خطوة 3.2
ألغِ العامل المشترك لـ .
خطوة 3.2.1
ألغِ العامل المشترك.
خطوة 3.2.2
اقسِم على .
خطوة 4
خطوة 4.1
احسِب قيمة حد بسط الكسر وحد القاسم.
خطوة 4.1.1
خُذ نهاية بسط الكسر ونهاية القاسم.
خطوة 4.1.2
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 4.1.2.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.1.2.2
بسّط كل حد.
خطوة 4.1.2.2.1
اطرح من .
خطوة 4.1.2.2.2
اضرب في .
خطوة 4.1.2.3
اطرح من .
خطوة 4.1.3
احسِب قيمة حد القاسم.
خطوة 4.1.3.1
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 4.1.3.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 4.1.3.3
قسّم النهاية بتطبيق قاعدة حاصل ضرب النهايات على النهاية بينما يقترب من .
خطوة 4.1.3.4
انقُل النهاية داخل اللوغاريتم.
خطوة 4.1.3.5
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 4.1.3.6
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 4.1.3.7
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 4.1.3.8
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 4.1.3.9
احسِب قيم الحدود بالتعويض عن جميع حالات حدوث بـ .
خطوة 4.1.3.9.1
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.1.3.9.2
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.1.3.9.3
احسِب قيمة حد بالتعويض عن بـ .
خطوة 4.1.3.10
بسّط الإجابة.
خطوة 4.1.3.10.1
بسّط كل حد.
خطوة 4.1.3.10.1.1
اضرب في .
خطوة 4.1.3.10.1.2
اضرب في .
خطوة 4.1.3.10.1.3
اطرح من .
خطوة 4.1.3.10.1.4
اللوغاريتم الطبيعي لـ يساوي .
خطوة 4.1.3.10.1.5
اضرب في .
خطوة 4.1.3.10.1.6
اطرح من .
خطوة 4.1.3.10.1.7
اضرب في .
خطوة 4.1.3.10.2
اطرح من .
خطوة 4.1.3.10.3
أضف و.
خطوة 4.1.3.10.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 4.1.3.11
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 4.1.4
تتضمن العبارة قسمة على . العبارة غير معرّفة.
غير معرّف
خطوة 4.2
بما أن مكتوبة بصيغة غير معيّنة، طبّق قاعدة لوبيتال. تنص قاعدة لوبيتال على أن نهاية ناتج قسمة الدوال يساوي نهاية ناتج قسمة مشتقاتها.
خطوة 4.3
أوجِد مشتق بسط الكسر والقاسم.
خطوة 4.3.1
أوجِد مشتقة البسط والقاسم.
خطوة 4.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.4
احسِب قيمة .
خطوة 4.3.4.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.3.4.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.4.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.4.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.4.5
أضف و.
خطوة 4.3.4.6
اضرب في .
خطوة 4.3.5
اطرح من .
خطوة 4.3.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.8
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.9
احسِب قيمة .
خطوة 4.3.9.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 4.3.9.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.9.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.9.4
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.9.5
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 4.3.9.5.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 4.3.9.5.2
مشتق بالنسبة إلى يساوي .
خطوة 4.3.9.5.3
استبدِل كافة حالات حدوث بـ .
خطوة 4.3.9.6
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.9.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.3.9.8
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.9.9
أضف و.
خطوة 4.3.9.10
اضرب في .
خطوة 4.3.9.11
أضف و.
خطوة 4.3.9.12
اضرب في .
خطوة 4.3.10
بسّط.
خطوة 4.3.10.1
أضف و.
خطوة 4.3.10.2
أعِد ترتيب الحدود.
خطوة 4.3.10.3
ألغِ العامل المشترك لـ .
خطوة 4.3.10.3.1
ألغِ العامل المشترك.
خطوة 4.3.10.3.2
أعِد كتابة العبارة.
خطوة 4.3.10.4
أضف و.
خطوة 5
خطوة 5.1
قسّم النهاية بتطبيق قاعدة قسمة النهايات على النهاية بينما يقترب من .
خطوة 5.2
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 5.3
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 5.4
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 5.5
انقُل النهاية داخل اللوغاريتم.
خطوة 5.6
قسّم النهاية بتطبيق قاعدة مجموع النهايات على النهاية بينما يقترب من .
خطوة 5.7
احسِب قيمة حد الذي يظل ثابتًا مع اقتراب من .
خطوة 6
احسِب قيمة حد بالتعويض عن بـ .
خطوة 7
خطوة 7.1
بسّط القاسم.
خطوة 7.1.1
اضرب في .
خطوة 7.1.2
اطرح من .
خطوة 7.1.3
اللوغاريتم الطبيعي لـ يساوي .
خطوة 7.1.4
أضف و.
خطوة 7.2
انقُل السالب أمام الكسر.
خطوة 8
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: