حساب التفاضل والتكامل الأمثلة

Encuentre la derivada de 2nd f(x)=3x^3(x^2-4)
خطوة 1
أوجِد المشتق الأول.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 1.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.3.4
أضف و.
خطوة 1.4
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
انقُل .
خطوة 1.4.2
اضرب في .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.2.1
ارفع إلى القوة .
خطوة 1.4.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.4.3
أضف و.
خطوة 1.5
انقُل إلى يسار .
خطوة 1.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.7
انقُل إلى يسار .
خطوة 1.8
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.8.1
طبّق خاصية التوزيع.
خطوة 1.8.2
طبّق خاصية التوزيع.
خطوة 1.8.3
طبّق خاصية التوزيع.
خطوة 1.8.4
جمّع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.8.4.1
اضرب في .
خطوة 1.8.4.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.8.4.2.1
انقُل .
خطوة 1.8.4.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.8.4.2.3
أضف و.
خطوة 1.8.4.3
اضرب في .
خطوة 1.8.4.4
اضرب في .
خطوة 1.8.4.5
اضرب في .
خطوة 1.8.4.6
أضف و.
خطوة 2
أوجِد المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.3
اضرب في .
خطوة 2.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3
اضرب في .
خطوة 3
أوجِد المشتق الثالث.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2.3
اضرب في .
خطوة 3.3
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.3.3
اضرب في .
خطوة 4
أوجِد المشتق الرابع.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 4.2
احسِب قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 4.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 4.2.3
اضرب في .
خطوة 4.3
أوجِد المشتقة باستخدام قاعدة الدالة الثابتة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 4.3.2
أضف و.
خطوة 5
المشتق الرابع لـ بالنسبة إلى هو .