حساب التفاضل والتكامل الأمثلة

أوجد قيمة التكامل تكامل 1/(t^3 الجذر التربيعي لـ t^2-9) بالنسبة إلى t
خطوة 1
لنفترض أن ، حيث . إذن . لاحظ أنه نظرًا إلى أن ، إذن تُعد موجبة.
خطوة 2
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.1
طبّق قاعدة الضرب على .
خطوة 2.1.1.2
ارفع إلى القوة .
خطوة 2.1.2
أخرِج العامل من .
خطوة 2.1.3
أخرِج العامل من .
خطوة 2.1.4
أخرِج العامل من .
خطوة 2.1.5
طبّق متطابقة فيثاغورس.
خطوة 2.1.6
أعِد كتابة بالصيغة .
خطوة 2.1.7
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.2
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
أخرِج العامل من .
خطوة 2.2.1.2
أخرِج العامل من .
خطوة 2.2.1.3
ألغِ العامل المشترك.
خطوة 2.2.1.4
أعِد كتابة العبارة.
خطوة 2.2.2
اجمع و.
خطوة 2.2.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
أخرِج العامل من .
خطوة 2.2.3.2
طبّق قاعدة الضرب على .
خطوة 2.2.3.3
ارفع إلى القوة .
خطوة 2.2.3.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.4.1
اضرب في .
خطوة 2.2.3.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.4.2.1
أخرِج العامل من .
خطوة 2.2.3.4.2.2
ألغِ العامل المشترك.
خطوة 2.2.3.4.2.3
أعِد كتابة العبارة.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد كتابة بالصيغة .
خطوة 4.2
أعِد كتابة بالصيغة .
خطوة 4.3
أعِد كتابة من حيث الجيوب وجيوب التمام.
خطوة 4.4
اضرب في مقلوب الكسر للقسمة على .
خطوة 4.5
اضرب في .
خطوة 5
استخدِم قاعدة نصف الزاوية لإعادة كتابة بحيث تصبح .
خطوة 6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 7
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
اضرب في .
خطوة 7.2
اضرب في .
خطوة 8
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 9
طبّق قاعدة الثابت.
خطوة 10
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 10.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 10.1.1
أوجِد مشتقة .
خطوة 10.1.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 10.1.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 10.1.4
اضرب في .
خطوة 10.2
أعِد كتابة المسألة باستخدام و.
خطوة 11
اجمع و.
خطوة 12
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 13
تكامل بالنسبة إلى هو .
خطوة 14
بسّط.
خطوة 15
عوّض مجددًا بقيمة كل متغير في التكامل بالتعويض.
انقر لعرض المزيد من الخطوات...
خطوة 15.1
استبدِل كافة حالات حدوث بـ .
خطوة 15.2
استبدِل كافة حالات حدوث بـ .
خطوة 15.3
استبدِل كافة حالات حدوث بـ .
خطوة 16
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 16.1
اجمع و.
خطوة 16.2
طبّق خاصية التوزيع.
خطوة 16.3
اجمع و.
خطوة 16.4
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 16.4.1
اضرب في .
خطوة 16.4.2
اضرب في .
خطوة 17
أعِد ترتيب الحدود.