حساب التفاضل والتكامل الأمثلة

أوجد قيمة التكامل تكامل (2x^2-5x+2)/(x^3+x) بالنسبة إلى x
خطوة 1
اكتب الكسر باستخدام التفكيك الكسري الجزئي.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
فكّ الكسر واضرب في القاسم المشترك.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1
حلّل الكسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1
حلّل إلى عوامل بالتجميع.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1.1.1
أخرِج العامل من .
خطوة 1.1.1.1.1.2
أعِد كتابة في صورة زائد
خطوة 1.1.1.1.1.3
طبّق خاصية التوزيع.
خطوة 1.1.1.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.1.2.1
جمّع أول حدين وآخر حدين.
خطوة 1.1.1.1.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 1.1.1.1.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 1.1.1.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.1.2.1
أخرِج العامل من .
خطوة 1.1.1.2.2
ارفع إلى القوة .
خطوة 1.1.1.2.3
أخرِج العامل من .
خطوة 1.1.1.2.4
أخرِج العامل من .
خطوة 1.1.2
أنشئ كسرًا جديدًا لكل عامل في القاسم باستخدام العامل كقاسم، وقيمة غير معروفة كبسط الكسر. ونظرًا إلى أن العامل من الرتبة الثانية، يلزم وجود من الحدود في بسط الكسر. ودائمًا ما يكون عدد الحدود اللازم في بسط الكسر مساويًا لرتبة العامل في القاسم.
خطوة 1.1.3
اضرب كل كسر في المعادلة في قاسم العبارة الأصلية. في هذه الحالة، القاسم يساوي .
خطوة 1.1.4
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.1.1
ألغِ العامل المشترك.
خطوة 1.1.4.1.2
أعِد كتابة العبارة.
خطوة 1.1.4.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.4.2.1
ألغِ العامل المشترك.
خطوة 1.1.4.2.2
اقسِم على .
خطوة 1.1.5
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 1.1.5.1
طبّق خاصية التوزيع.
خطوة 1.1.5.2
طبّق خاصية التوزيع.
خطوة 1.1.5.3
طبّق خاصية التوزيع.
خطوة 1.1.6
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.6.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.6.1.1
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.6.1.1.1
انقُل .
خطوة 1.1.6.1.1.2
اضرب في .
خطوة 1.1.6.1.2
اضرب في .
خطوة 1.1.6.1.3
أعِد كتابة بالصيغة .
خطوة 1.1.6.1.4
اضرب في .
خطوة 1.1.6.2
اطرح من .
خطوة 1.1.7
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.7.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.7.1.1
ألغِ العامل المشترك.
خطوة 1.1.7.1.2
اقسِم على .
خطوة 1.1.7.2
طبّق خاصية التوزيع.
خطوة 1.1.7.3
اضرب في .
خطوة 1.1.7.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1.7.4.1
ألغِ العامل المشترك.
خطوة 1.1.7.4.2
اقسِم على .
خطوة 1.1.7.5
طبّق خاصية التوزيع.
خطوة 1.1.7.6
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.1.7.6.1
انقُل .
خطوة 1.1.7.6.2
اضرب في .
خطوة 1.1.8
انقُل .
خطوة 1.2
أنشئ معادلات لمتغيرات الكسور الجزئية واستخدمها لتعيين سلسلة معادلات.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 1.2.2
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات من كل متعادل. ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 1.2.3
أنشئ معادلة لمتغيرات الكسر الجزئي عن طريق معادلة معاملات الحدود التي لا تتضمن . ولكي تكون المعادلة متساوية، يجب أن تكون المعاملات المتكافئة في كل متعادل متساوية.
خطوة 1.2.4
عيّن سلسلة المعادلات لإيجاد معاملات الكسور الجزئية.
خطوة 1.3
أوجِد حل سلسلة المعادلات.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أعِد كتابة المعادلة في صورة .
خطوة 1.3.2
أعِد كتابة المعادلة في صورة .
خطوة 1.3.3
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1
استبدِل كافة حالات حدوث في بـ .
خطوة 1.3.3.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.2.1
احذِف الأقواس.
خطوة 1.3.4
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.4.1
أعِد كتابة المعادلة في صورة .
خطوة 1.3.4.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.4.2.1
اطرح من كلا المتعادلين.
خطوة 1.3.4.2.2
اطرح من .
خطوة 1.3.5
أوجِد حل سلسلة المعادلات.
خطوة 1.3.6
اسرِد جميع الحلول.
خطوة 1.4
استبدِل كل معامل من معاملات الكسور الجزئية في بالقيم التي تم إيجادها لـ و و.
خطوة 1.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.1
احذِف الأقواس.
خطوة 1.5.2
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.2.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.5.2.1.1
أخرِج العامل من .
خطوة 1.5.2.1.2
أخرِج العامل من .
خطوة 1.5.2.1.3
أخرِج العامل من .
خطوة 1.5.2.2
اضرب في .
خطوة 1.5.2.3
اطرح من .
خطوة 1.5.3
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.5.3.1
اضرب في .
خطوة 1.5.3.2
انقُل السالب أمام الكسر.
خطوة 2
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 4
تكامل بالنسبة إلى هو .
خطوة 5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 6
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 7
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
اضرب في .
خطوة 7.2
أعِد ترتيب و.
خطوة 7.3
أعِد كتابة بالصيغة .
خطوة 8
تكامل بالنسبة إلى هو .
خطوة 9
بسّط.