إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2
خطوة 2.1
افترض أن . أوجِد .
خطوة 2.1.1
أوجِد مشتقة .
خطوة 2.1.2
أوجِد المشتقة.
خطوة 2.1.2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.2.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.1.3
احسِب قيمة .
خطوة 2.1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.1.3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.1.3.2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.1.3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.1.3.5
اضرب في .
خطوة 2.1.3.6
اضرب في .
خطوة 2.1.3.7
اضرب في .
خطوة 2.1.4
أضف و.
خطوة 2.2
عوّض بالنهاية الدنيا عن في .
خطوة 2.3
بسّط.
خطوة 2.3.1
بسّط كل حد.
خطوة 2.3.1.1
اضرب في .
خطوة 2.3.1.2
القيمة الدقيقة لـ هي .
خطوة 2.3.1.3
اضرب في .
خطوة 2.3.2
اطرح من .
خطوة 2.4
عوّض بالنهاية العليا عن في .
خطوة 2.5
بسّط.
خطوة 2.5.1
بسّط كل حد.
خطوة 2.5.1.1
ألغِ العامل المشترك لـ .
خطوة 2.5.1.1.1
ألغِ العامل المشترك.
خطوة 2.5.1.1.2
أعِد كتابة العبارة.
خطوة 2.5.1.2
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن جيب التمام سالب في الربع الثاني.
خطوة 2.5.1.3
القيمة الدقيقة لـ هي .
خطوة 2.5.1.4
اضرب .
خطوة 2.5.1.4.1
اضرب في .
خطوة 2.5.1.4.2
اضرب في .
خطوة 2.5.2
أضف و.
خطوة 2.6
ستُستخدم القيم التي تم إيجادها لـ و في حساب قيمة التكامل المحدد.
خطوة 2.7
أعِد كتابة المسألة باستخدام و والنهايات الجديدة للتكامل.
خطوة 3
خطوة 3.1
اضرب في .
خطوة 3.2
انقُل إلى يسار .
خطوة 4
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5
خطوة 5.1
اجمع و.
خطوة 5.2
ألغِ العامل المشترك لـ .
خطوة 5.2.1
ألغِ العامل المشترك.
خطوة 5.2.2
أعِد كتابة العبارة.
خطوة 5.3
اضرب في .
خطوة 6
تكامل بالنسبة إلى هو .
خطوة 7
احسِب قيمة في وفي .
خطوة 8
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 9
خطوة 9.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 9.2
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 10
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: