إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
خطوة 2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3
خطوة 3.1
اجمع و.
خطوة 3.2
بسّط الحدود.
خطوة 3.2.1
اجمع و.
خطوة 3.2.2
انقُل إلى يسار .
خطوة 3.2.3
احذِف العامل المشترك لـ و.
خطوة 3.2.3.1
أخرِج العامل من .
خطوة 3.2.3.2
ألغِ العوامل المشتركة.
خطوة 3.2.3.2.1
أخرِج العامل من .
خطوة 3.2.3.2.2
ألغِ العامل المشترك.
خطوة 3.2.3.2.3
أعِد كتابة العبارة.
خطوة 3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 3.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.6
اضرب في .
خطوة 3.7
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.8
اجمع الكسور.
خطوة 3.8.1
أضف و.
خطوة 3.8.2
اجمع و.
خطوة 3.8.3
انقُل إلى يسار .
خطوة 4
خطوة 4.1
أعِد كتابة بالصيغة .
خطوة 4.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 4.2.1
طبّق خاصية التوزيع.
خطوة 4.2.2
طبّق خاصية التوزيع.
خطوة 4.2.3
طبّق خاصية التوزيع.
خطوة 4.3
بسّط ووحّد الحدود المتشابهة.
خطوة 4.3.1
بسّط كل حد.
خطوة 4.3.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.3.1.2
اضرب في بجمع الأُسس.
خطوة 4.3.1.2.1
انقُل .
خطوة 4.3.1.2.2
اضرب في .
خطوة 4.3.1.3
اضرب في .
خطوة 4.3.1.4
اضرب في .
خطوة 4.3.1.5
اضرب في .
خطوة 4.3.1.6
اضرب في .
خطوة 4.3.2
أضف و.
خطوة 4.4
طبّق خاصية التوزيع.
خطوة 4.5
بسّط.
خطوة 4.5.1
اضرب في .
خطوة 4.5.2
اضرب في .
خطوة 4.5.3
اضرب في .