حساب التفاضل والتكامل الأمثلة

حل المعادلة التفاضلية (dy)/(dx)=(6x^2y)/(e^(2-x^3)) , y(0)=1
,
خطوة 1
افصِل المتغيرات.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أعِد تجميع العوامل.
خطوة 1.2
اضرب كلا الطرفين في .
خطوة 1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أخرِج العامل من .
خطوة 1.3.2
ألغِ العامل المشترك.
خطوة 1.3.3
أعِد كتابة العبارة.
خطوة 1.4
أعِد كتابة المعادلة.
خطوة 2
أوجِد تكامل كلا الطرفين.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن التكامل في كل طرف.
خطوة 2.2
تكامل بالنسبة إلى هو .
خطوة 2.3
أوجِد تكامل الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
اعكِس علامة أُس وأخرِجها من القاسم.
خطوة 2.3.2.2
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.2.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.3.2.2.2
طبّق خاصية التوزيع.
خطوة 2.3.2.2.3
اضرب في .
خطوة 2.3.2.2.4
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.2.4.1
اضرب في .
خطوة 2.3.2.2.4.2
اضرب في .
خطوة 2.3.3
لنفترض أن . إذن ، لذا . أعِد الكتابة باستخدام و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1
افترض أن . أوجِد .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.3.1.1
أوجِد مشتقة .
خطوة 2.3.3.1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3.1.3
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.3.1.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.3.1.5
أضف و.
خطوة 2.3.3.2
أعِد كتابة المسألة باستخدام و.
خطوة 2.3.4
اجمع و.
خطوة 2.3.5
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 2.3.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.6.1
اجمع و.
خطوة 2.3.6.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.6.2.1
أخرِج العامل من .
خطوة 2.3.6.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.6.2.2.1
أخرِج العامل من .
خطوة 2.3.6.2.2.2
ألغِ العامل المشترك.
خطوة 2.3.6.2.2.3
أعِد كتابة العبارة.
خطوة 2.3.6.2.2.4
اقسِم على .
خطوة 2.3.7
تكامل بالنسبة إلى هو .
خطوة 2.3.8
بسّط.
خطوة 2.3.9
استبدِل كافة حالات حدوث بـ .
خطوة 2.4
جمّع ثابت التكامل في الطرف الأيمن في صورة .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
لإيجاد قيمة ، أعِد كتابة المعادلة باستخدام خصائص اللوغاريتمات.
خطوة 3.2
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.3.2
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 4
جمّع حدود الثابت معًا.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد كتابة بالصيغة .
خطوة 4.2
أعِد ترتيب و.
خطوة 4.3
اجمع الثوابت مع الزائد أو الناقص.
خطوة 5
استخدِم الشرط الابتدائي لإيجاد قيمة بالتعويض بـ عن وبـ عن في .
خطوة 6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أعِد كتابة المعادلة في صورة .
خطوة 6.2
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.2.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 6.2.2
أضف و.
خطوة 6.2.3
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 6.2.4
اجمع و.
خطوة 6.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
اقسِم كل حد في على .
خطوة 6.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
ألغِ العامل المشترك.
خطوة 6.3.2.2
اقسِم على .
خطوة 7
عوّض بـ عن في وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
عوّض بقيمة التي تساوي .
خطوة 7.2
اجمع و.
خطوة 7.3
أخرِج العامل من .
خطوة 7.4
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 7.4.1
اضرب في .
خطوة 7.4.2
ألغِ العامل المشترك.
خطوة 7.4.3
أعِد كتابة العبارة.
خطوة 7.4.4
اقسِم على .
خطوة 7.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.5.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 7.5.1.1
أخرِج العامل من .
خطوة 7.5.1.2
أخرِج العامل من .
خطوة 7.5.1.3
أخرِج العامل من .
خطوة 7.5.2
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 7.5.2.1
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 7.5.2.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 7.5.2.2.1
أضف و.
خطوة 7.5.2.2.2
أضف و.