إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد مشتقة بالنسبة إلى .
خطوة 1.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 1.3
احسِب قيمة .
خطوة 1.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.3
انقُل إلى يسار .
خطوة 1.4
أوجِد المشتقة.
خطوة 1.4.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.4.2
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 1.4.3
أضف و.
خطوة 2
خطوة 2.1
أوجِد مشتقة بالنسبة إلى .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.3
أوجِد المشتقة.
خطوة 2.3.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.4
اضرب في .
خطوة 2.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 2.3.6
أضف و.
خطوة 2.3.7
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.8
بسّط بجمع الحدود.
خطوة 2.3.8.1
اضرب في .
خطوة 2.3.8.2
أضف و.
خطوة 3
خطوة 3.1
عوّض بـ عن وبـ عن .
خطوة 3.2
بما أن الطرفين تبين أنهما متكافئان، إذن المعادلة تمثل متطابقة.
تمثل متطابقة.
تمثل متطابقة.
خطوة 4
عيّن لتساوي تكامل .
خطوة 5
خطوة 5.1
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.2
قسّم التكامل الواحد إلى عدة تكاملات.
خطوة 5.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 5.4
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 5.5
طبّق قاعدة الثابت.
خطوة 5.6
اجمع و.
خطوة 5.7
بسّط.
خطوة 5.8
أعِد ترتيب الحدود.
خطوة 6
بما أن تكامل سيحتوي على ثابت التكامل، إذن يمكننا استبدال بـ .
خطوة 7
عيّن .
خطوة 8
خطوة 8.1
أوجِد مشتقة بالنسبة إلى .
خطوة 8.2
أوجِد المشتقة باستخدام قاعدة الجمع.
خطوة 8.2.1
بسّط كل حد.
خطوة 8.2.1.1
اجمع و.
خطوة 8.2.1.2
اجمع و.
خطوة 8.2.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 8.3
احسِب قيمة .
خطوة 8.3.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 8.3.2
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 8.3.3
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 8.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 8.3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 8.3.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 8.3.7
اضرب في .
خطوة 8.3.8
أضف و.
خطوة 8.3.9
اجمع و.
خطوة 8.3.10
اضرب في .
خطوة 8.3.11
أضف و.
خطوة 8.3.12
اجمع و.
خطوة 8.3.13
ألغِ العامل المشترك لـ .
خطوة 8.3.13.1
ألغِ العامل المشترك.
خطوة 8.3.13.2
اقسِم على .
خطوة 8.4
أوجِد المشتقة باستخدام قاعدة الدالة التي تنص على أن مشتق هو .
خطوة 8.5
أعِد ترتيب الحدود.
خطوة 9
خطوة 9.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 9.1.1
اطرح من كلا المتعادلين.
خطوة 9.1.2
اطرح من كلا المتعادلين.
خطوة 9.1.3
جمّع الحدود المتعاكسة في .
خطوة 9.1.3.1
أعِد ترتيب العوامل في الحدين و.
خطوة 9.1.3.2
اطرح من .
خطوة 9.1.3.3
أضف و.
خطوة 9.1.3.4
اطرح من .
خطوة 9.1.3.5
أضف و.
خطوة 10
خطوة 10.1
أوجِد تكامل كلا طرفي .
خطوة 10.2
احسِب قيمة .
خطوة 10.3
بما أن عدد ثابت بالنسبة إلى ، انقُل خارج التكامل.
خطوة 10.4
وفقًا لقاعدة القوة، فإن تكامل بالنسبة إلى هو .
خطوة 10.5
أعِد كتابة بالصيغة .
خطوة 11
عوّض عن في .
خطوة 12
خطوة 12.1
بسّط كل حد.
خطوة 12.1.1
اجمع و.
خطوة 12.1.2
اجمع و.
خطوة 12.2
طبّق خاصية التوزيع.
خطوة 12.3
اضرب .
خطوة 12.3.1
اجمع و.
خطوة 12.3.2
ارفع إلى القوة .
خطوة 12.3.3
ارفع إلى القوة .
خطوة 12.3.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 12.3.5
أضف و.
خطوة 12.4
اجمع و.