إدخال مسألة...
حساب التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة القوة.
خطوة 1.2.1
اضرب الأُسس في .
خطوة 1.2.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 1.2.1.2
انقُل إلى يسار .
خطوة 1.2.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.2.3
اضرب في .
خطوة 1.3
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 1.4
بسّط.
خطوة 1.4.1
أعِد ترتيب الحدود.
خطوة 1.4.2
أخرِج العامل من .
خطوة 1.4.2.1
أخرِج العامل من .
خطوة 1.4.2.2
اضرب في .
خطوة 1.4.2.3
أخرِج العامل من .
خطوة 1.4.3
احذِف العامل المشترك لـ و.
خطوة 1.4.3.1
أخرِج العامل من .
خطوة 1.4.3.2
ألغِ العوامل المشتركة.
خطوة 1.4.3.2.1
اضرب في .
خطوة 1.4.3.2.2
ألغِ العامل المشترك.
خطوة 1.4.3.2.3
أعِد كتابة العبارة.
خطوة 1.4.3.2.4
اقسِم على .
خطوة 1.4.4
طبّق خاصية التوزيع.
خطوة 1.4.5
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.4.6
اضرب في .
خطوة 1.4.7
أعِد ترتيب العوامل في .
خطوة 2
خطوة 2.1
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 2.2
احسِب قيمة .
خطوة 2.2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.2
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 2.2.3
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.2.3.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.3.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.2.3.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.2.4
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2.5
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.6
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.2.7
اضرب في .
خطوة 2.2.8
انقُل إلى يسار .
خطوة 2.2.9
أعِد كتابة بالصيغة .
خطوة 2.2.10
اضرب في .
خطوة 2.3
احسِب قيمة .
خطوة 2.3.1
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 2.3.1.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.3.1.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 2.3.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.4
اضرب في .
خطوة 2.3.5
انقُل إلى يسار .
خطوة 2.3.6
أعِد كتابة بالصيغة .
خطوة 2.4
بسّط.
خطوة 2.4.1
طبّق خاصية التوزيع.
خطوة 2.4.2
جمّع الحدود.
خطوة 2.4.2.1
اضرب في .
خطوة 2.4.2.2
اضرب في .
خطوة 2.4.2.3
اطرح من .
خطوة 2.4.3
أعِد ترتيب الحدود.
خطوة 2.4.4
أعِد ترتيب العوامل في .