حساب التفاضل والتكامل الأمثلة

خطوة 1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2
أوجِد المشتقة باستخدام قاعدة القسمة التي تنص على أن هو حيث و.
خطوة 3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.2
اضرب في .
خطوة 3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.5
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.6
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
أضف و.
خطوة 3.6.2
اضرب في .
خطوة 4
ارفع إلى القوة .
خطوة 5
ارفع إلى القوة .
خطوة 6
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 7
أضف و.
خطوة 8
اطرح من .
خطوة 9
اجمع و.
خطوة 10
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 10.1
طبّق خاصية التوزيع.
خطوة 10.2
اضرب في .
خطوة 10.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 10.3.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 10.3.1.1
أخرِج العامل من .
خطوة 10.3.1.2
أخرِج العامل من .
خطوة 10.3.1.3
أخرِج العامل من .
خطوة 10.3.2
أعِد ترتيب و.
خطوة 10.3.3
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.