إدخال مسألة...
الجبر الأمثلة
خطوة 1
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 2
خطوة 2.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.2
بسّط .
خطوة 2.2.1
أعِد كتابة بالصيغة .
خطوة 2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.3.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.3.2
اقسِم كل حد في على وبسّط.
خطوة 2.3.2.1
اقسِم كل حد في على .
خطوة 2.3.2.2
بسّط الطرف الأيسر.
خطوة 2.3.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.3.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.2.2.1.2
اقسِم على .
خطوة 2.3.2.3
بسّط الطرف الأيمن.
خطوة 2.3.2.3.1
اقسِم على .
خطوة 2.3.3
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.3.4
اقسِم كل حد في على وبسّط.
خطوة 2.3.4.1
اقسِم كل حد في على .
خطوة 2.3.4.2
بسّط الطرف الأيسر.
خطوة 2.3.4.2.1
ألغِ العامل المشترك لـ .
خطوة 2.3.4.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.4.2.1.2
اقسِم على .
خطوة 2.3.4.3
بسّط الطرف الأيمن.
خطوة 2.3.4.3.1
اقسِم على .
خطوة 2.3.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3
استبعِد الحلول التي لا تجعل صحيحة.