إدخال مسألة...
الجبر الأمثلة
خطوة 1
خطوة 1.1
أخرِج العامل من .
خطوة 1.1.1
أخرِج العامل من .
خطوة 1.1.2
أخرِج العامل من .
خطوة 1.1.3
أخرِج العامل من .
خطوة 1.2
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 1.2.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 1.2.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 1.3
اختزِل العبارة بحذف العوامل المشتركة.
خطوة 1.3.1
ألغِ العامل المشترك.
خطوة 1.3.2
أعِد كتابة العبارة.
خطوة 1.4
أعِد كتابة بالصيغة .
خطوة 1.5
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.3
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.4
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.5
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.7
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
بسّط كل حد.
خطوة 3.2.1.1
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2
أعِد كتابة العبارة.
خطوة 3.2.1.2
طبّق خاصية التوزيع.
خطوة 3.2.1.3
اضرب في .
خطوة 3.2.1.4
انقُل إلى يسار .
خطوة 3.2.1.5
ألغِ العامل المشترك لـ .
خطوة 3.2.1.5.1
ألغِ العامل المشترك.
خطوة 3.2.1.5.2
أعِد كتابة العبارة.
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 3.3.1.1
طبّق خاصية التوزيع.
خطوة 3.3.1.2
طبّق خاصية التوزيع.
خطوة 3.3.1.3
طبّق خاصية التوزيع.
خطوة 3.3.2
بسّط الحدود.
خطوة 3.3.2.1
جمّع الحدود المتعاكسة في .
خطوة 3.3.2.1.1
أعِد ترتيب العوامل في الحدين و.
خطوة 3.3.2.1.2
أضف و.
خطوة 3.3.2.1.3
أضف و.
خطوة 3.3.2.2
بسّط كل حد.
خطوة 3.3.2.2.1
اضرب في .
خطوة 3.3.2.2.2
اضرب في .
خطوة 3.3.2.3
بسّط بالضرب.
خطوة 3.3.2.3.1
طبّق خاصية التوزيع.
خطوة 3.3.2.3.2
اضرب في .
خطوة 4
خطوة 4.1
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
خطوة 4.1.1
أضف إلى كلا المتعادلين.
خطوة 4.1.2
أضف و.
خطوة 4.2
انقُل كل الحدود إلى المتعادل الأيسر وبسّط.
خطوة 4.2.1
اطرح من كلا المتعادلين.
خطوة 4.2.2
اطرح من .
خطوة 4.3
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 4.4
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 4.5
بسّط.
خطوة 4.5.1
بسّط بَسْط الكسر.
خطوة 4.5.1.1
ارفع إلى القوة .
خطوة 4.5.1.2
اضرب .
خطوة 4.5.1.2.1
اضرب في .
خطوة 4.5.1.2.2
اضرب في .
خطوة 4.5.1.3
أضف و.
خطوة 4.5.2
اضرب في .
خطوة 4.6
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: