إدخال مسألة...
الجبر الأمثلة
خطوة 1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 2
خطوة 2.1
حلّل المتعادل الأيسر إلى عوامل.
خطوة 2.1.1
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.1.1.1
جمّع أول حدين وآخر حدين.
خطوة 2.1.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.1.2
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 2.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.2
أضف إلى كلا المتعادلين.
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أوجِد قيمة في .
خطوة 2.4.2.1
أضف إلى كلا المتعادلين.
خطوة 2.4.2.2
اقسِم كل حد في على وبسّط.
خطوة 2.4.2.2.1
اقسِم كل حد في على .
خطوة 2.4.2.2.2
بسّط الطرف الأيسر.
خطوة 2.4.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.4.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.4.2.2.2.1.2
اقسِم على .
خطوة 2.4.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 2.4.2.4
بسّط .
خطوة 2.4.2.4.1
أعِد كتابة بالصيغة .
خطوة 2.4.2.4.2
بسّط القاسم.
خطوة 2.4.2.4.2.1
أعِد كتابة بالصيغة .
خطوة 2.4.2.4.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.4.2.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.4.2.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.4.2.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.4.2.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 4