الجبر الأمثلة

أوجد التقاطعات مع x و y لوغاريتم x+4-3 للأساس 2
خطوة 1
اكتب في صورة معادلة.
خطوة 2
أوجِد نقاط التقاطع مع المحور السيني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
لإيجاد نقطة (نقاط) التقاطع مع المحور السيني، عوّض بـ عن وأوجِد قيمة .
خطوة 2.2
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
أعِد كتابة المعادلة في صورة .
خطوة 2.2.2
أضف إلى كلا المتعادلين.
خطوة 2.2.3
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 2.2.4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.4.1
أعِد كتابة المعادلة في صورة .
خطوة 2.2.4.2
ارفع إلى القوة .
خطوة 2.2.4.3
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.4.3.1
اطرح من كلا المتعادلين.
خطوة 2.2.4.3.2
اطرح من .
خطوة 2.3
نقطة (نقاط) التقاطع مع المحور السيني بصيغة النقطة.
نقطة (نقاط) التقاطع مع المحور السيني:
نقطة (نقاط) التقاطع مع المحور السيني:
خطوة 3
أوجِد نقاط التقاطع مع المحور الصادي.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
لإيجاد نقطة (نقاط) التقاطع مع المحور الصادي، عوّض بـ عن وأوجِد قيمة .
خطوة 3.2
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
احذِف الأقواس.
خطوة 3.2.2
احذِف الأقواس.
خطوة 3.2.3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1.1
أضف و.
خطوة 3.2.3.1.2
أساس اللوغاريتم لـ هو .
خطوة 3.2.3.2
اطرح من .
خطوة 3.3
نقطة (نقاط) التقاطع مع المحور الصادي بصيغة النقطة.
نقطة (نقاط) التقاطع مع المحور الصادي:
نقطة (نقاط) التقاطع مع المحور الصادي:
خطوة 4
اسرِد التقاطعات.
نقطة (نقاط) التقاطع مع المحور السيني:
نقطة (نقاط) التقاطع مع المحور الصادي:
خطوة 5