الجبر الأمثلة

أوجد الجذور (الأصفار) 2x^4-11x^3+24x^2-66x+72=0
خطوة 1
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أعِد تجميع الحدود.
خطوة 1.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أخرِج العامل من .
خطوة 1.2.2
أخرِج العامل من .
خطوة 1.2.3
أخرِج العامل من .
خطوة 1.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
أخرِج العامل من .
خطوة 1.3.2
أخرِج العامل من .
خطوة 1.3.3
أخرِج العامل من .
خطوة 1.3.4
أخرِج العامل من .
خطوة 1.3.5
أخرِج العامل من .
خطوة 1.4
أعِد كتابة بالصيغة .
خطوة 1.5
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 1.6
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.6.1
أعِد كتابة بالصيغة .
خطوة 1.6.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 1.6.3
أعِد كتابة متعدد الحدود.
خطوة 1.6.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 1.7
استبدِل كافة حالات حدوث بـ .
خطوة 1.8
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.8.1
أخرِج العامل من .
خطوة 1.8.2
أخرِج العامل من .
خطوة 1.8.3
أخرِج العامل من .
خطوة 1.9
طبّق خاصية التوزيع.
خطوة 1.10
اضرب في .
خطوة 1.11
أعِد ترتيب الحدود.
خطوة 1.12
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 1.12.1
حلّل إلى عوامل بالتجميع.
انقر لعرض المزيد من الخطوات...
خطوة 1.12.1.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
انقر لعرض المزيد من الخطوات...
خطوة 1.12.1.1.1
أخرِج العامل من .
خطوة 1.12.1.1.2
أعِد كتابة في صورة زائد
خطوة 1.12.1.1.3
طبّق خاصية التوزيع.
خطوة 1.12.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 1.12.1.2.1
جمّع أول حدين وآخر حدين.
خطوة 1.12.1.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 1.12.1.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 1.12.2
احذِف الأقواس غير الضرورية.
خطوة 2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
اطرح من كلا المتعادلين.
خطوة 3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3.2.3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1
أعِد كتابة بالصيغة .
خطوة 3.2.3.2
أعِد كتابة بالصيغة .
خطوة 3.2.3.3
أعِد كتابة بالصيغة .
خطوة 3.2.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.2.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.2.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
أضف إلى كلا المتعادلين.
خطوة 4.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
اقسِم كل حد في على .
خطوة 4.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.2.2.1.2
اقسِم على .
خطوة 5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
أضف إلى كلا المتعادلين.
خطوة 6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 7