إدخال مسألة...
الجبر الأمثلة
خطوة 1
أوجِد مشتقة المتعادلين.
خطوة 2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3
خطوة 3.1
أوجِد المشتقة باستخدام قاعدة الضرب التي تنص على أن هو حيث و.
خطوة 3.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.2.2
أوجِد المشتقة باستخدام القاعدة الأسية التي تنص على أن هو حيث = .
خطوة 3.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.4
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.4.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.4.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.4.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.5
أعِد كتابة بالصيغة .
خطوة 3.6
أوجِد المشتقة.
خطوة 3.6.1
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.6.2
أضف و.
خطوة 3.6.3
وفقًا لقاعدة الجمع، فإن مشتق بالنسبة إلى هو .
خطوة 3.7
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
خطوة 3.7.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 3.7.2
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 3.7.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.8
أعِد كتابة بالصيغة .
خطوة 3.9
بما أن عدد ثابت بالنسبة إلى ، فإن مشتق بالنسبة إلى هو .
خطوة 3.10
أضف و.
خطوة 3.11
بسّط.
خطوة 3.11.1
طبّق خاصية التوزيع.
خطوة 3.11.2
طبّق خاصية التوزيع.
خطوة 3.11.3
جمّع الحدود.
خطوة 3.11.3.1
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.11.3.2
أضف و.
خطوة 3.11.3.3
اضرب في .
خطوة 3.11.4
أعِد ترتيب الحدود.
خطوة 4
عدّل المعادلة بمساواة قيمة الطرف الأيسر بقيمة الطرف الأيمن.
خطوة 5
أعِد كتابة المعادلة في صورة .
خطوة 6
استبدِل بـ .