الجبر الأمثلة

Resolver para x لوغاريتم -x+ للأساس 2 لوغاريتم x+12=5 للأساس 2
خطوة 1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
استخدِم خاصية الضرب في اللوغاريتمات، .
خطوة 1.2
طبّق خاصية التوزيع.
خطوة 1.3
اضرب في بجمع الأُسس.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
انقُل .
خطوة 1.3.2
اضرب في .
خطوة 1.4
اضرب في .
خطوة 2
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.2
ارفع إلى القوة .
خطوة 3.3
اطرح من كلا المتعادلين.
خطوة 3.4
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1.1
أخرِج العامل من .
خطوة 3.4.1.2
أخرِج العامل من .
خطوة 3.4.1.3
أعِد كتابة بالصيغة .
خطوة 3.4.1.4
أخرِج العامل من .
خطوة 3.4.1.5
أخرِج العامل من .
خطوة 3.4.2
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.2.1
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.2.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 3.4.2.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 3.4.2.2
احذِف الأقواس غير الضرورية.
خطوة 3.5
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.6.2
اطرح من كلا المتعادلين.
خطوة 3.7
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.7.2
اطرح من كلا المتعادلين.
خطوة 3.8
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.