الجبر الأمثلة

Resolver para x لوغاريتم x+ للأساس 2 لوغاريتم x-1 للأساس 2 = لوغاريتم 2 للأساس 2
خطوة 1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
استخدِم خاصية الضرب في اللوغاريتمات، .
خطوة 1.2
بسّط بالضرب.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
طبّق خاصية التوزيع.
خطوة 1.2.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1
اضرب في .
خطوة 1.2.2.2
انقُل إلى يسار .
خطوة 1.3
أعِد كتابة بالصيغة .
خطوة 2
أساس اللوغاريتم لـ هو .
خطوة 3
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد كتابة المعادلة في صورة .
خطوة 4.2
اطرح من كلا المتعادلين.
خطوة 4.3
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 4.3.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 4.4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.5.2
أضف إلى كلا المتعادلين.
خطوة 4.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.6.2
اطرح من كلا المتعادلين.
خطوة 4.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 5
استبعِد الحلول التي لا تجعل صحيحة.