إدخال مسألة...
الجبر الأمثلة
خطوة 1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 2
خطوة 2.1
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
خطوة 2.1.1
أعِد كتابة بالصيغة .
خطوة 2.1.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 2.1.3
أعِد كتابة متعدد الحدود.
خطوة 2.1.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 2.2
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3
اطرح من كلا المتعادلين.
خطوة 3
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4
خطوة 4.1
أضف إلى كلا المتعادلين.
خطوة 4.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 4.3
أي جذر لـ هو .
خطوة 4.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 4.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 4.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 6
خطوة 6.1
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 6.2
أوجِد قيمة في المعادلة.
خطوة 6.2.1
اطرح من كلا المتعادلين.
خطوة 6.2.2
اقسِم كل حد في على وبسّط.
خطوة 6.2.2.1
اقسِم كل حد في على .
خطوة 6.2.2.2
بسّط الطرف الأيسر.
خطوة 6.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 6.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 6.2.2.2.1.2
اقسِم على .
خطوة 6.2.2.3
بسّط الطرف الأيمن.
خطوة 6.2.2.3.1
اقسِم على .
خطوة 7
تصبح المعادلة غير معرّفة عندما يكون القاسم مساويًا لـ ، أو عندما يكون المتغير المستقل للجذر التربيعي أصغر من ، أو عندما يكون المتغير المستقل للوغاريتم أصغر من أو يساوي .
خطوة 8