الجبر الأمثلة

Resolver el Sistema de Equations 9x^2+4y^2=36 y=9/2x-3
خطوة 1
اجمع و.
خطوة 2
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.1
أعِد كتابة بالصيغة .
خطوة 2.2.1.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.2.1
طبّق خاصية التوزيع.
خطوة 2.2.1.1.2.2
طبّق خاصية التوزيع.
خطوة 2.2.1.1.2.3
طبّق خاصية التوزيع.
خطوة 2.2.1.1.3
بسّط ووحّد الحدود المتشابهة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.3.1.1
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.3.1.1.1
اضرب في .
خطوة 2.2.1.1.3.1.1.2
اضرب في .
خطوة 2.2.1.1.3.1.1.3
ارفع إلى القوة .
خطوة 2.2.1.1.3.1.1.4
ارفع إلى القوة .
خطوة 2.2.1.1.3.1.1.5
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.2.1.1.3.1.1.6
أضف و.
خطوة 2.2.1.1.3.1.1.7
اضرب في .
خطوة 2.2.1.1.3.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.3.1.2.1
اجمع و.
خطوة 2.2.1.1.3.1.2.2
اضرب في .
خطوة 2.2.1.1.3.1.3
انقُل السالب أمام الكسر.
خطوة 2.2.1.1.3.1.4
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.3.1.4.1
اجمع و.
خطوة 2.2.1.1.3.1.4.2
اضرب في .
خطوة 2.2.1.1.3.1.5
انقُل السالب أمام الكسر.
خطوة 2.2.1.1.3.1.6
اضرب في .
خطوة 2.2.1.1.3.2
اطرح من .
خطوة 2.2.1.1.4
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.4.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.4.1.1
أخرِج العامل من .
خطوة 2.2.1.1.4.1.2
ألغِ العامل المشترك.
خطوة 2.2.1.1.4.1.3
أعِد كتابة العبارة.
خطوة 2.2.1.1.4.2
اضرب في .
خطوة 2.2.1.1.5
طبّق خاصية التوزيع.
خطوة 2.2.1.1.6
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.6.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.6.1.1
ألغِ العامل المشترك.
خطوة 2.2.1.1.6.1.2
أعِد كتابة العبارة.
خطوة 2.2.1.1.6.2
اضرب في .
خطوة 2.2.1.1.6.3
اضرب في .
خطوة 2.2.1.2
أضف و.
خطوة 3
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اطرح من كلا المتعادلين.
خطوة 3.2
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
اطرح من .
خطوة 3.2.2
أضف و.
خطوة 3.3
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
أخرِج العامل من .
خطوة 3.3.2
أخرِج العامل من .
خطوة 3.3.3
أخرِج العامل من .
خطوة 3.4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.5
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.6.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.2.1
أضف إلى كلا المتعادلين.
خطوة 3.6.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.2.2.1
اقسِم كل حد في على .
خطوة 3.6.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.6.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.6.2.2.2.1.2
اقسِم على .
خطوة 3.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
استبدِل كافة حالات حدوث في بـ .
خطوة 4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
اضرب في .
خطوة 4.2.1.2
اقسِم على .
خطوة 4.2.1.3
اطرح من .
خطوة 5
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
استبدِل كافة حالات حدوث في بـ .
خطوة 5.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1.1
اجمع و.
خطوة 5.2.1.1.2
اضرب في .
خطوة 5.2.1.1.3
اضرب بسط الكسر في مقلوب القاسم.
خطوة 5.2.1.1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1.4.1
أخرِج العامل من .
خطوة 5.2.1.1.4.2
ألغِ العامل المشترك.
خطوة 5.2.1.1.4.3
أعِد كتابة العبارة.
خطوة 5.2.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.2.1.3
اجمع و.
خطوة 5.2.1.4
اجمع البسوط على القاسم المشترك.
خطوة 5.2.1.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.5.1
اضرب في .
خطوة 5.2.1.5.2
اطرح من .
خطوة 6
حل السلسلة هو المجموعة الكاملة من الأزواج المرتبة التي تُعد حلولاً صحيحة.
خطوة 7
يمكن عرض النتيجة بصيغ متعددة.
صيغة النقطة:
صيغة المعادلة:
خطوة 8