إدخال مسألة...
الجبر الأمثلة
خطوة 1
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 2
خطوة 2.1
بسّط .
خطوة 2.1.1
أعِد كتابة العبارة باستخدام قاعدة الأُسس السالبة .
خطوة 2.1.2
بسّط القاسم.
خطوة 2.1.2.1
طبّق قاعدة الضرب على .
خطوة 2.1.2.2
ارفع إلى القوة .
خطوة 2.2
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
خطوة 2.2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2.2
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 2.3
اضرب كل حد في في لحذف الكسور.
خطوة 2.3.1
اضرب كل حد في في .
خطوة 2.3.2
بسّط الطرف الأيسر.
خطوة 2.3.2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.3.2.2
ألغِ العامل المشترك لـ .
خطوة 2.3.2.2.1
أخرِج العامل من .
خطوة 2.3.2.2.2
ألغِ العامل المشترك.
خطوة 2.3.2.2.3
أعِد كتابة العبارة.
خطوة 2.3.2.3
ألغِ العامل المشترك لـ .
خطوة 2.3.2.3.1
ألغِ العامل المشترك.
خطوة 2.3.2.3.2
أعِد كتابة العبارة.
خطوة 2.3.3
بسّط الطرف الأيمن.
خطوة 2.3.3.1
اضرب في .
خطوة 2.4
أوجِد حل المعادلة.
خطوة 2.4.1
أعِد كتابة المعادلة في صورة .
خطوة 2.4.2
اقسِم كل حد في على وبسّط.
خطوة 2.4.2.1
اقسِم كل حد في على .
خطوة 2.4.2.2
بسّط الطرف الأيسر.
خطوة 2.4.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.4.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.4.2.2.1.2
اقسِم على .
خطوة 2.4.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.4.4
بسّط .
خطوة 2.4.4.1
أعِد كتابة بالصيغة .
خطوة 2.4.4.2
أي جذر لـ هو .
خطوة 2.4.4.3
بسّط القاسم.
خطوة 2.4.4.3.1
أعِد كتابة بالصيغة .
خطوة 2.4.4.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.4.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.4.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.4.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.4.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3
استبعِد الحلول التي لا تجعل صحيحة.
خطوة 4
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: