إدخال مسألة...
الجبر الأمثلة
خطوة 1
حوّل التباين إلى تساوٍ.
خطوة 2
خطوة 2.1
بسّط بنقل داخل اللوغاريتم.
خطوة 2.2
لكي تكون المعادلة متساوية، يجب أن يتساوى المتغير المستقل للوغاريتمات في كلا المتعادلين.
خطوة 2.3
أوجِد قيمة .
خطوة 2.3.1
أضف إلى كلا المتعادلين.
خطوة 2.3.2
اطرح من كلا المتعادلين.
خطوة 2.3.3
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 2.3.3.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 2.3.3.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 2.3.4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.3.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.3.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.5.2
أضف إلى كلا المتعادلين.
خطوة 2.3.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.3.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.6.2
اطرح من كلا المتعادلين.
خطوة 2.3.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
خطوة 3.1
عيّن قيمة المتغير المستقل في بحيث تصبح أكبر من لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 3.2
أوجِد قيمة .
خطوة 3.2.1
أوجِد جميع القيم التي تتحول فيها العبارة من سالبة إلى موجبة بتعيين قيمة كل عامل لتصبح مساوية لـ وحلّها.
خطوة 3.2.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.2.3
بسّط .
خطوة 3.2.3.1
أعِد كتابة بالصيغة .
خطوة 3.2.3.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.2.3.3
زائد أو ناقص يساوي .
خطوة 3.2.4
اطرح من كلا المتعادلين.
خطوة 3.2.5
اقسِم كل حد في على وبسّط.
خطوة 3.2.5.1
اقسِم كل حد في على .
خطوة 3.2.5.2
بسّط الطرف الأيسر.
خطوة 3.2.5.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 3.2.5.2.2
اقسِم على .
خطوة 3.2.5.3
بسّط الطرف الأيمن.
خطوة 3.2.5.3.1
اقسِم على .
خطوة 3.2.6
أوجِد قيمة كل عامل لإيجاد القيم التي تنتقل فيها عبارة القيمة المطلقة من السالب إلى الموجب.
خطوة 3.2.7
وحّد الحلول.
خطوة 3.2.8
أوجِد نطاق .
خطوة 3.2.8.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.2.8.2
أوجِد قيمة .
خطوة 3.2.8.2.1
اطرح من كلا المتعادلين.
خطوة 3.2.8.2.2
اقسِم كل حد في على وبسّط.
خطوة 3.2.8.2.2.1
اقسِم كل حد في على .
خطوة 3.2.8.2.2.2
بسّط الطرف الأيسر.
خطوة 3.2.8.2.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 3.2.8.2.2.2.2
اقسِم على .
خطوة 3.2.8.2.2.3
بسّط الطرف الأيمن.
خطوة 3.2.8.2.2.3.1
اقسِم على .
خطوة 3.2.8.3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
خطوة 3.2.9
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
خطوة 3.2.10
اختر قيمة اختبار من كل فترة وعوض بهذه القيمة في المتباينة الأصلية لتحدد أي الفترات تستوفي المتباينة.
خطوة 3.2.10.1
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 3.2.10.1.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 3.2.10.1.2
استبدِل بـ في المتباينة الأصلية.
خطوة 3.2.10.1.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
صائب
صائب
خطوة 3.2.10.2
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 3.2.10.2.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 3.2.10.2.2
استبدِل بـ في المتباينة الأصلية.
خطوة 3.2.10.2.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
صائب
صائب
خطوة 3.2.10.3
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 3.2.10.3.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 3.2.10.3.2
استبدِل بـ في المتباينة الأصلية.
خطوة 3.2.10.3.3
الطرف الأيسر ليس أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
خطأ
خطأ
خطوة 3.2.10.4
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
صحيحة
صحيحة
خطأ
صحيحة
صحيحة
خطأ
خطوة 3.2.11
يتكون الحل من جميع الفترات الصحيحة.
أو
أو
خطوة 3.3
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 3.4
أوجِد قيمة .
خطوة 3.4.1
اطرح من كلا المتعادلين.
خطوة 3.4.2
اقسِم كل حد في على وبسّط.
خطوة 3.4.2.1
اقسِم كل حد في على .
خطوة 3.4.2.2
بسّط الطرف الأيسر.
خطوة 3.4.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 3.4.2.2.2
اقسِم على .
خطوة 3.4.2.3
بسّط الطرف الأيمن.
خطوة 3.4.2.3.1
اقسِم على .
خطوة 3.5
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
خطوة 4
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
خطوة 5
خطوة 5.1
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 5.1.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 5.1.2
استبدِل بـ في المتباينة الأصلية.
خطوة 5.1.3
حدد ما إذا كانت المتباينة صحيحة أم لا.
خطوة 5.1.3.1
لا يمكن حل المعادلة لأنها غير معرّفة.
خطوة 5.1.3.2
الطرف الأيسر ليس له حل، ما يعني أن العبارة المُعطاة خطأ.
خطأ
خطأ
خطأ
خطوة 5.2
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 5.2.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 5.2.2
استبدِل بـ في المتباينة الأصلية.
خطوة 5.2.3
حدد ما إذا كانت المتباينة صحيحة أم لا.
خطوة 5.2.3.1
لا يمكن حل المعادلة لأنها غير معرّفة.
خطوة 5.2.3.2
الطرف الأيسر ليس له حل، ما يعني أن العبارة المُعطاة خطأ.
خطأ
خطأ
خطأ
خطوة 5.3
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
خطوة 5.3.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 5.3.2
استبدِل بـ في المتباينة الأصلية.
خطوة 5.3.3
حدد ما إذا كانت المتباينة صحيحة أم لا.
خطوة 5.3.3.1
لا يمكن حل المعادلة لأنها غير معرّفة.
خطوة 5.3.3.2
الطرف الأيمن ليس له حل، ما يعني أن العبارة المُعطاة خطأ.
خطأ
خطأ
خطأ
خطوة 5.4
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
خطأ
خطأ
خطأ
خطأ
خطأ
خطأ
خطوة 6
بما أنه لا توجد أي أعداد واقعة ضمن الفترة، إذن لا يوجد حل لهذه المتباينة.
لا يوجد حل