إدخال مسألة...
الجبر الأمثلة
خطوة 1
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
اجمع البسوط على القاسم المشترك.
خطوة 1.3
اطرح من .
خطوة 1.4
اقسِم على .
خطوة 2
انقُل السالب أمام الكسر.
خطوة 3
خطوة 3.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 3.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 3.3
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 3.4
لها العاملان و.
خطوة 3.5
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 3.6
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 3.7
اضرب في .
خطوة 3.8
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 3.9
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 3.10
المضاعف المشترك الأصغر لبعض الأعداد هو أصغر عدد تمثل الأعداد عوامله.
خطوة 4
خطوة 4.1
اضرب كل حد في في .
خطوة 4.2
بسّط الطرف الأيسر.
خطوة 4.2.1
ألغِ العامل المشترك لـ .
خطوة 4.2.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 4.2.1.2
أخرِج العامل من .
خطوة 4.2.1.3
ألغِ العامل المشترك.
خطوة 4.2.1.4
أعِد كتابة العبارة.
خطوة 4.2.2
اضرب في .
خطوة 4.3
بسّط الطرف الأيمن.
خطوة 4.3.1
بسّط كل حد.
خطوة 4.3.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.3.1.2
ألغِ العامل المشترك لـ .
خطوة 4.3.1.2.1
ألغِ العامل المشترك.
خطوة 4.3.1.2.2
أعِد كتابة العبارة.
خطوة 4.3.1.3
طبّق خاصية التوزيع.
خطوة 4.3.1.4
اضرب في .
خطوة 4.3.1.5
انقُل إلى يسار .
خطوة 4.3.1.6
طبّق خاصية التوزيع.
خطوة 4.3.1.7
اضرب في .
خطوة 4.3.1.8
طبّق خاصية التوزيع.
خطوة 4.3.1.9
اضرب في .
خطوة 4.3.1.10
اضرب في .
خطوة 4.3.2
اطرح من .
خطوة 5
خطوة 5.1
أعِد كتابة المعادلة في صورة .
خطوة 5.2
أضف إلى كلا المتعادلين.
خطوة 5.3
جمّع الحدود المتعاكسة في .
خطوة 5.3.1
أضف و.
خطوة 5.3.2
أضف و.
خطوة 5.4
أخرِج العامل من .
خطوة 5.4.1
أخرِج العامل من .
خطوة 5.4.2
أخرِج العامل من .
خطوة 5.4.3
أخرِج العامل من .
خطوة 5.5
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 5.6
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.7
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 5.7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.7.2
أضف إلى كلا المتعادلين.
خطوة 5.8
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.