الجبر الأمثلة

Resolver para n x^2+11x+121/4=(x+n)^2
خطوة 1
أعِد كتابة المعادلة في صورة .
خطوة 2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
أعِد كتابة بالصيغة .
خطوة 3.1.2
أعِد كتابة بالصيغة .
خطوة 3.1.3
أعِد كتابة بالصيغة .
خطوة 3.1.4
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 3.1.5
أعِد كتابة متعدد الحدود.
خطوة 3.1.6
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 3.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.3
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
اجمع و.
خطوة 3.3.2
اجمع البسوط على القاسم المشترك.
خطوة 3.4
انقُل إلى يسار .
خطوة 3.5
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
طبّق قاعدة الضرب على .
خطوة 3.5.2
ارفع إلى القوة .
خطوة 3.5.3
أعِد كتابة بالصيغة .
خطوة 3.6
أعِد كتابة بالصيغة .
خطوة 3.7
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 4.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
اطرح من كلا المتعادلين.
خطوة 4.2.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
قسّم الكسر إلى كسرين.
خطوة 4.2.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.2.1
ألغِ العامل المشترك.
خطوة 4.2.2.2.2
اقسِم على .
خطوة 4.2.3
جمّع الحدود المتعاكسة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1
اطرح من .
خطوة 4.2.3.2
أضف و.
خطوة 4.3
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 4.4
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.1
اطرح من كلا المتعادلين.
خطوة 4.4.2
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.4.2.1
قسّم الكسر إلى كسرين.
خطوة 4.4.2.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.4.2.2.1
ألغِ العامل المشترك.
خطوة 4.4.2.2.2
اقسِم على .
خطوة 4.4.2.3
طبّق خاصية التوزيع.
خطوة 4.4.3
اطرح من .
خطوة 4.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.