إدخال مسألة...
الجبر الأمثلة
خطوة 1
أعِد كتابة المعادلة في صورة .
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
احذِف الأقواس.
خطوة 2.3
المضاعف المشترك الأصغر لإحدى العبارات ولأي منها هو العبارة.
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.1.2
أعِد كتابة العبارة.
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
طبّق خاصية التوزيع.
خطوة 3.3.2
انقُل إلى يسار .
خطوة 4
خطوة 4.1
اطرح من كلا المتعادلين.
خطوة 4.2
أخرِج العامل من .
خطوة 4.2.1
أخرِج العامل من .
خطوة 4.2.2
أخرِج العامل من .
خطوة 4.2.3
أخرِج العامل من .
خطوة 4.3
اقسِم كل حد في على وبسّط.
خطوة 4.3.1
اقسِم كل حد في على .
خطوة 4.3.2
بسّط الطرف الأيسر.
خطوة 4.3.2.1
ألغِ العامل المشترك لـ .
خطوة 4.3.2.1.1
ألغِ العامل المشترك.
خطوة 4.3.2.1.2
اقسِم على .
خطوة 5
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 6
خطوة 6.1
اطرح من كلا المتعادلين.
خطوة 6.2
اقسِم كل حد في على وبسّط.
خطوة 6.2.1
اقسِم كل حد في على .
خطوة 6.2.2
بسّط الطرف الأيسر.
خطوة 6.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 6.2.2.2
اقسِم على .
خطوة 6.2.3
بسّط الطرف الأيمن.
خطوة 6.2.3.1
اقسِم على .
خطوة 7
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 8
المدى هو مجموعة جميع قيم الصالحة. استخدِم الرسم البياني لإيجاد المدى.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 9
حدد النطاق والمدى.
النطاق:
المدى:
خطوة 10