الجبر الأمثلة

Resolver la inecuación para x -9>-4-4/5(-3/2x+1)
خطوة 1
أعِد الكتابة بحيث تصبح في الطرف الأيسر للمتباينة.
خطوة 2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.1
اجمع و.
خطوة 2.1.1.2
انقُل إلى يسار .
خطوة 2.1.2
طبّق خاصية التوزيع.
خطوة 2.1.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 2.1.3.2
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 2.1.3.3
أخرِج العامل من .
خطوة 2.1.3.4
ألغِ العامل المشترك.
خطوة 2.1.3.5
أعِد كتابة العبارة.
خطوة 2.1.4
اجمع و.
خطوة 2.1.5
اضرب في .
خطوة 2.1.6
اجمع و.
خطوة 2.1.7
اضرب في .
خطوة 2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.3
اجمع و.
خطوة 2.4
اجمع البسوط على القاسم المشترك.
خطوة 2.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
اضرب في .
خطوة 2.5.2
اطرح من .
خطوة 2.6
انقُل السالب أمام الكسر.
خطوة 3
انقُل كل الحدود التي لا تحتوي على إلى الطرف الأيمن للمتباينة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أضِف إلى كلا طرفي المتباينة.
خطوة 3.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.3
اجمع و.
خطوة 3.4
اجمع البسوط على القاسم المشترك.
خطوة 3.5
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
اضرب في .
خطوة 3.5.2
أضف و.
خطوة 3.6
انقُل السالب أمام الكسر.
خطوة 4
بما أن العبارة في كل متعادل لها نفس القاسم، إذن يجب أن يكون البسطان متساويين.
خطوة 5
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اقسِم كل حد في على .
خطوة 5.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1.1
ألغِ العامل المشترك.
خطوة 5.2.1.2
اقسِم على .
خطوة 5.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1.1
أخرِج العامل من .
خطوة 5.3.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1.2.1
أخرِج العامل من .
خطوة 5.3.1.2.2
ألغِ العامل المشترك.
خطوة 5.3.1.2.3
أعِد كتابة العبارة.
خطوة 5.3.2
انقُل السالب أمام الكسر.
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
صيغة التباين:
ترميز الفترة: