إدخال مسألة...
الجبر الأمثلة
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
بما أن تحتوي على أرقام ومتغيرات على حدٍّ سواء، فهناك أربع خطوات لإيجاد المضاعف المشترك الأصغر. أوجِد المضاعف المشترك الأصغر للأجزاء المتغيرة العددية والمتغيرة والمركبة. ثم اضربها جميعًا معًا.
تتمثل خطوات إيجاد المضاعف المشترك الأصغر لـ فيما يلي:
1. أوجِد المضاعف المشترك الأصغر للجزء الرقمي .
2. أوجِد المضاعف المشترك الأصغر للجزء المتغير .
3. أوجِد المضاعف المشترك الأصغر للجزء المتغير المركب .
4. اضرب كل مضاعف مشترك أصغر معًا.
خطوة 2.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.4
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.5
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.7
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.8
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.9
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.10
المضاعف المشترك الأصغر لبعض الأعداد هو أصغر عدد تمثل الأعداد عوامله.
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
بسّط كل حد.
خطوة 3.2.1.1
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2
أعِد كتابة العبارة.
خطوة 3.2.1.2
طبّق خاصية التوزيع.
خطوة 3.2.1.3
اضرب في .
خطوة 3.2.1.4
ألغِ العامل المشترك لـ .
خطوة 3.2.1.4.1
أخرِج العامل من .
خطوة 3.2.1.4.2
ألغِ العامل المشترك.
خطوة 3.2.1.4.3
أعِد كتابة العبارة.
خطوة 3.2.1.5
طبّق خاصية التوزيع.
خطوة 3.2.1.6
اضرب في .
خطوة 3.2.1.7
اضرب في .
خطوة 3.2.1.8
طبّق خاصية التوزيع.
خطوة 3.2.2
بسّط بجمع الحدود.
خطوة 3.2.2.1
أضف و.
خطوة 3.2.2.2
جمّع الحدود المتعاكسة في .
خطوة 3.2.2.2.1
اطرح من .
خطوة 3.2.2.2.2
أضف و.
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
طبّق خاصية التوزيع.
خطوة 3.3.2
بسّط العبارة.
خطوة 3.3.2.1
اضرب في .
خطوة 3.3.2.2
اضرب في .
خطوة 3.3.2.3
اضرب في .
خطوة 4
خطوة 4.1
اطرح من كلا المتعادلين.
خطوة 4.2
اقسِم كل حد في على وبسّط.
خطوة 4.2.1
اقسِم كل حد في على .
خطوة 4.2.2
بسّط الطرف الأيسر.
خطوة 4.2.2.1
ألغِ العامل المشترك لـ .
خطوة 4.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.2.1.2
اقسِم على .
خطوة 4.2.3
بسّط الطرف الأيمن.
خطوة 4.2.3.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 4.3
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 4.4
بسّط .
خطوة 4.4.1
أعِد كتابة بالصيغة .
خطوة 4.4.2
اضرب في .
خطوة 4.4.3
جمّع وبسّط القاسم.
خطوة 4.4.3.1
اضرب في .
خطوة 4.4.3.2
ارفع إلى القوة .
خطوة 4.4.3.3
ارفع إلى القوة .
خطوة 4.4.3.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.4.3.5
أضف و.
خطوة 4.4.3.6
أعِد كتابة بالصيغة .
خطوة 4.4.3.6.1
استخدِم لكتابة في صورة .
خطوة 4.4.3.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.4.3.6.3
اجمع و.
خطوة 4.4.3.6.4
ألغِ العامل المشترك لـ .
خطوة 4.4.3.6.4.1
ألغِ العامل المشترك.
خطوة 4.4.3.6.4.2
أعِد كتابة العبارة.
خطوة 4.4.3.6.5
احسِب قيمة الأُس.
خطوة 4.4.4
بسّط بَسْط الكسر.
خطوة 4.4.4.1
اجمع باستخدام قاعدة ضرب الجذور.
خطوة 4.4.4.2
اضرب في .
خطوة 4.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 4.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 4.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: