الجبر الأمثلة

Resolver para x لوغاريتم 3x-2 للأساس 5 لوغاريتم 6=1 للأساس 5
خطوة 1
انقُل كل الحدود التي تحتوي على لوغاريتم إلى المتعادل الأيسر.
خطوة 2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.1
بسّط بنقل داخل اللوغاريتم.
خطوة 2.1.1.2
ارفع إلى القوة .
خطوة 2.1.2
استخدِم خاصية القسمة في اللوغاريتمات، .
خطوة 2.1.3
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.1
أخرِج العامل من .
خطوة 2.1.3.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.3.2.1
أخرِج العامل من .
خطوة 2.1.3.2.2
ألغِ العامل المشترك.
خطوة 2.1.3.2.3
أعِد كتابة العبارة.
خطوة 3
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد كتابة المعادلة في صورة .
خطوة 4.2
اضرب كلا المتعادلين في .
خطوة 4.3
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1.1
ألغِ العامل المشترك.
خطوة 4.3.1.1.2
أعِد كتابة العبارة.
خطوة 4.3.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.1
احسِب قيمة الأُس.
خطوة 4.3.2.1.2
اضرب في .