Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Разделим каждый член на и упростим.
Этап 1.1.1
Разделим каждый член на .
Этап 1.1.2
Упростим левую часть.
Этап 1.1.2.1
Сократим общий множитель .
Этап 1.1.2.1.1
Сократим общий множитель.
Этап 1.1.2.1.2
Перепишем это выражение.
Этап 1.1.2.2
Сократим общий множитель .
Этап 1.1.2.2.1
Сократим общий множитель.
Этап 1.1.2.2.2
Разделим на .
Этап 1.1.3
Упростим правую часть.
Этап 1.1.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.1.3.2
Умножим на .
Этап 1.1.3.3
Изменим порядок множителей в .
Этап 1.2
Перегруппируем множители.
Этап 1.3
Умножим обе части на .
Этап 1.4
Упростим.
Этап 1.4.1
Применим свойство дистрибутивности.
Этап 1.4.2
Умножим на .
Этап 1.4.3
Умножим на .
Этап 1.4.4
Умножим на .
Этап 1.4.5
Умножим на .
Этап 1.4.6
Вынесем множитель из .
Этап 1.4.6.1
Вынесем множитель из .
Этап 1.4.6.2
Возведем в степень .
Этап 1.4.6.3
Вынесем множитель из .
Этап 1.4.6.4
Вынесем множитель из .
Этап 1.4.7
Сократим общий множитель .
Этап 1.4.7.1
Сократим общий множитель.
Этап 1.4.7.2
Перепишем это выражение.
Этап 1.4.8
Сократим общий множитель .
Этап 1.4.8.1
Сократим общий множитель.
Этап 1.4.8.2
Перепишем это выражение.
Этап 1.5
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Этап 2.2.1
Умножим .
Этап 2.2.2
Упростим.
Этап 2.2.2.1
Возведем в степень .
Этап 2.2.2.2
Возведем в степень .
Этап 2.2.2.3
Применим правило степени для объединения показателей.
Этап 2.2.2.4
Добавим и .
Этап 2.2.2.5
Умножим на .
Этап 2.2.3
Разделим данный интеграл на несколько интегралов.
Этап 2.2.4
По правилу степени интеграл по имеет вид .
Этап 2.2.5
По правилу степени интеграл по имеет вид .
Этап 2.2.6
Упростим.
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Разделим дробь на несколько дробей.
Этап 2.3.2
Разделим данный интеграл на несколько интегралов.
Этап 2.3.3
Сократим общий множитель и .
Этап 2.3.3.1
Вынесем множитель из .
Этап 2.3.3.2
Сократим общие множители.
Этап 2.3.3.2.1
Возведем в степень .
Этап 2.3.3.2.2
Вынесем множитель из .
Этап 2.3.3.2.3
Сократим общий множитель.
Этап 2.3.3.2.4
Перепишем это выражение.
Этап 2.3.3.2.5
Разделим на .
Этап 2.3.4
По правилу степени интеграл по имеет вид .
Этап 2.3.5
Интеграл по имеет вид .
Этап 2.3.6
Упростим.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .