Математический анализ Примеры

Вычислим интеграл интеграл (1/(x^2)-1/(x^3)) в пределах от -3 до -1 по x
Этап 1
Избавимся от скобок.
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 3.1
Вынесем из знаменателя, возведя в степень.
Этап 3.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Применим правило степени и перемножим показатели, .
Этап 3.2.2
Умножим на .
Этап 4
По правилу степени интеграл по имеет вид .
Этап 5
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 6.1
Вынесем из знаменателя, возведя в степень.
Этап 6.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Применим правило степени и перемножим показатели, .
Этап 6.2.2
Умножим на .
Этап 7
По правилу степени интеграл по имеет вид .
Этап 8
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 8.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.1.1
Объединим и .
Этап 8.1.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 8.2
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Найдем значение в и в .
Этап 8.2.2
Найдем значение в и в .
Этап 8.2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.2.3.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 8.2.3.2
Вынесем знак минуса из знаменателя .
Этап 8.2.3.3
Умножим на .
Этап 8.2.3.4
Умножим на .
Этап 8.2.3.5
Перепишем выражение, используя правило отрицательных степеней .
Этап 8.2.3.6
Вынесем знак минуса перед дробью.
Этап 8.2.3.7
Запишем в виде дроби с общим знаменателем.
Этап 8.2.3.8
Объединим числители над общим знаменателем.
Этап 8.2.3.9
Вычтем из .
Этап 8.2.3.10
Возведем в степень .
Этап 8.2.3.11
Умножим на .
Этап 8.2.3.12
Возведем в степень .
Этап 8.2.3.13
Умножим на .
Этап 8.2.3.14
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.2.3.15
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.3.15.1
Умножим на .
Этап 8.2.3.15.2
Умножим на .
Этап 8.2.3.16
Объединим числители над общим знаменателем.
Этап 8.2.3.17
Добавим и .
Этап 8.2.3.18
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 8.2.3.18.1
Вынесем множитель из .
Этап 8.2.3.18.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 8.2.3.18.2.1
Вынесем множитель из .
Этап 8.2.3.18.2.2
Сократим общий множитель.
Этап 8.2.3.18.2.3
Перепишем это выражение.
Этап 8.2.3.19
Вынесем знак минуса перед дробью.
Этап 8.2.3.20
Умножим на .
Этап 8.2.3.21
Умножим на .
Этап 8.2.3.22
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.2.3.23
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.3.23.1
Умножим на .
Этап 8.2.3.23.2
Умножим на .
Этап 8.2.3.24
Объединим числители над общим знаменателем.
Этап 8.2.3.25
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 8.2.3.25.1
Умножим на .
Этап 8.2.3.25.2
Добавим и .
Этап 9
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел:
Этап 10